Evidence for identity or close association of the Fc receptor of B lymphocytes and alloantigens determined by the Ir region of the H-2 complex. 1974

H B Dickler, and D H Sachs

Immunoglobulin complexes, composed of heat-aggregated human Ig, were shown to bind to mouse B lymphocytes of a variety of strains, but not to either thymocytes or thymus-derived (T) lymphocytes under a variety of conditions. It was shown that this binding was not due to either natural human antibodies against mouse nor to nonspecific binding of human Ig by mouse lymphocytes. Such complexes were shown to bind to the same sites which bind mouse antibody-antigen complexes. This site is known as the Fc receptor. The binding of Ig complexes to mouse B lymphocytes was markedly inhibited by pretreatment of the lymphocytes with anti-H-2 antisera. A series of experiments indicated the specificity of this result, including the fact that this inhibition was shown not to be due to the artifact of shedding of H-2 antibody-antigen complexes, nor to nonspecific steric inhibition. The antibodies within anti-H-2 antisera which were responsible for this inhibition were specific for alloantigens associated with the Ir region of the H-2 complex (Ia antigens). Antiserum specific for these Ia antigens produced inhibition, whereas antisera specific for antigens determined by the K or D regions of the H-2 complex did not. Evidence was obtained using F(1) hybrid cells that at least some Ia antigens of both parental types are expressed on every B lymphocyte (i.e. codominant expression). These data indicate that the Fc receptor and a series of alloantigens controlled by the Ir region of the H-2 complex are identical or closely associated on the B-lymphocyte surface membrane. This observation may have implications for the mechanism of control of the immune response.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D007141 Immunoglobulin Fc Fragments Crystallizable fragments composed of the carboxy-terminal halves of both IMMUNOGLOBULIN HEAVY CHAINS linked to each other by disulfide bonds. Fc fragments contain the carboxy-terminal parts of the heavy chain constant regions that are responsible for the effector functions of an immunoglobulin (COMPLEMENT fixation, binding to the cell membrane via FC RECEPTORS, and placental transport). This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fc Fragment,Fc Fragments,Fc Immunoglobulin,Fc Immunoglobulins,Ig Fc Fragments,Immunoglobulin Fc Fragment,Immunoglobulins, Fc,Immunoglobulins, Fc Fragment,Fc Fragment Immunoglobulins,Fc Fragment, Immunoglobulin,Fc Fragments, Ig,Fc Fragments, Immunoglobulin,Fragment Immunoglobulins, Fc,Fragment, Fc,Fragments, Ig Fc,Immunoglobulin, Fc
D007518 Isoantibodies Antibodies from an individual that react with ISOANTIGENS of another individual of the same species. Alloantibodies
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H B Dickler, and D H Sachs
August 1977, Journal of immunogenetics,
H B Dickler, and D H Sachs
July 1977, The Journal of experimental medicine,
H B Dickler, and D H Sachs
May 1974, Transplantation,
H B Dickler, and D H Sachs
October 1977, Proceedings of the National Academy of Sciences of the United States of America,
H B Dickler, and D H Sachs
March 1979, Transplantation proceedings,
H B Dickler, and D H Sachs
September 1982, European journal of immunology,
H B Dickler, and D H Sachs
November 1977, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!