Activation of T and B lymphocytes in vitro. III. Presence of Ia determinants on allogeneic effect factor. 1974

D Armerding, and D H Sachs, and D H Katz

Observations from our own laboratories, as well as those of others, have demonstrated the critical role of histocompatibility gene products in governing the cell-cell interactions concerned with development and regulation of immune responses in several species (8-12). In mice, the relevant genes concerned have been shown to be located in the K end of the H-2 complex, i.e. in the K and/or I See PDF for Structure regions (13, 14). These discoveries have placed histocompatibility gene products on a more complex level of biologic function than was heretofore generally considered (15). Thus, the hypothesis was made from these observations that genes in the H-2 complex coded for products involved in the development of effective cell-cell interactions in the immune response (8, 9, 15). The recent identification of cell surface macromolecules on lymphocytes and macrophages, that may be distinct from immune response gene products but are likewise coded for by genes in the I region, has provided a group of suitable candidate molecules for such a role (2). In our initial studies on the biological and biochemical characteristics of AEF, we were impressed by the apparent preferential activity of the highly purified AEF preparations on B lymphocytes syngeneic to the activated T-cell population from which the AEF was obtained (1). Since a prediction of the aforementioned hypothesis is, of course, that the active molecules involved in regulatory immunocompetent cell interactions are gene products of the H-2 complex, and, accordingly, should be reactive with antisera directed against components of this complex, we were prompted to perform the appropriate analyses on our preparation of AEF. The experiments presented here demonstrate that the enhancing activity of AEF obtained from T cells of the H-2(d) haplotype can be specifically removed by immunoadsorbents prepared from antisera reactive with la molecules of the H-2(d) allele. Identical results were obtained in experiments with both direct and indirect absorption procedures. The possibility that the reaction of AEF with the B10.A anti-B10 (anti-Ia.8) antiserum resulted in release of some components that were in turn toxic to the cultured cells, has been made unlikely in these studies by the use of a direct adsorption method utilizing an immunoadsorbent prepared from thoroughly washed glutaraldehyde-linked antibodies. The results obtained with the (B6A)F(1) anti-B10.D2 antiserum deserve some comment. This antiserum contains antibodies directed predominantly against the H-2K region specificity, H-2.31, but may also be reactive with recently determined Ia(d) specificities (5). The capacity of this antiserum to directly absorb approximately 45% of the AEF activity at the lowest concentration of AEF employed (Fig. 1) could be interpreted to indicate the reactivity of AEF with anti-H-2K antibodies. However, the data presented here are also consistent with the interpretation that partial adsorption by the direct immunoadsorbent and lack of adsorption by the indirect method (in which only a high concentration of AEF was incubated with the alloantisera) reflect reactivity of AEF with anti-Ia(d) antibodies present in this antiserum. We conclude, therefore, that the biologically active enhancing moieties of AEF bear Ia determinants and therefore are most probably gene products of the I region of the H-2 gene complex. Recent data from other investigators have shown that an antigen-specific T-cell product could be specifically adsorbed by immunoadsorbents prepared from antisera directed against the K end of H-2 (16). Since the latter antisera may contain antibodies reactive with specificities of both K and I regions, it is possible that the use of selective anti-Ia sera may yield results consistent with those presented here. Taken collectively, these observations indicate that I-region gene products may be intimately involved in the mechanism of cell-cell interactions and responsible for the regulation of immune responses.

UI MeSH Term Description Entries
D007518 Isoantibodies Antibodies from an individual that react with ISOANTIGENS of another individual of the same species. Alloantibodies
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Armerding, and D H Sachs, and D H Katz
November 1975, Proceedings of the National Academy of Sciences of the United States of America,
D Armerding, and D H Sachs, and D H Katz
October 1977, Journal of immunology (Baltimore, Md. : 1950),
D Armerding, and D H Sachs, and D H Katz
January 1976, International archives of allergy and applied immunology,
D Armerding, and D H Sachs, and D H Katz
October 1977, Journal of immunology (Baltimore, Md. : 1950),
D Armerding, and D H Sachs, and D H Katz
August 1979, The Journal of experimental medicine,
D Armerding, and D H Sachs, and D H Katz
March 1981, Transplantation proceedings,
Copied contents to your clipboard!