[Quaternary structure of glycogen synthetase I from rabbit skeletal muscles]. 1978

O L Evstaf'eva, and I S Sakharova, and G A Solov'eva

Glycogen synthetase I from rabbit skeletal muscles was studied by electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate. The presence of glycogen in the preparation prevented the destruction of the quaternary structure of the enzyme. In order to separate glycogen synthetase I from glycogen, alpha-amylase from saliva, pig pancrease and bacterial amyloglucosidase were used. The subunit composition of the total preparation and that of the individual glycogen synthetase forms separated ultracentrifugally in the sucrose density gradient, were shown to be identical. The molecular weight of the minimal subunit of glycogen synthetase I from rabbit skeletal muscles was shown to be 36,000. A comparison of the subunit composition of the enzyme preparations stored in the presence and in the absence of phenylmethylsulfanylfluoride did not show that the preparation possesses proteolytic activity.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D005087 Glucan 1,4-alpha-Glucosidase An enzyme that catalyzes the hydrolysis of terminal 1,4-linked alpha-D-glucose residues successively from non-reducing ends of polysaccharide chains with the release of beta-glucose. It is also able to hydrolyze 1,6-alpha-glucosidic bonds when the next bond in sequence is 1,4. 1,4-alpha-Glucosidase, Exo,Amyloglucosidase,Exo-1,4-alpha-Glucosidase,Glucoamylase,gamma-Amylase,Glucoamylase G1,Glucoamylase G2,1,4-alpha-Glucosidase, Glucan,Exo 1,4 alpha Glucosidase,Glucan 1,4 alpha Glucosidase,gamma Amylase
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D000681 Amylases A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-. Diastase,Amylase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
June 1975, Doklady Akademii nauk SSSR,
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
December 1977, Biokhimiia (Moscow, Russia),
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
January 1977, Ukrains'kyi biokhimichnyi zhurnal,
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
January 1974, Doklady Akademii nauk SSSR,
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
December 1981, Biokhimiia (Moscow, Russia),
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
January 1977, Doklady Akademii nauk SSSR,
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
June 1990, Biokhimiia (Moscow, Russia),
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
April 1990, Biokhimiia (Moscow, Russia),
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
November 1974, Doklady Akademii nauk SSSR,
O L Evstaf'eva, and I S Sakharova, and G A Solov'eva
February 1985, Biokhimiia (Moscow, Russia),
Copied contents to your clipboard!