Oscillations of enzyme activities during the cell-cycle of a glucose-repressed fission-yeast Schizosaccharomyces pombe 972h-. 1973

R K Poole, and D Lloyd

1. Increased specific activities of cytochrome c oxidase, catalase, succinate dehydrogenase, succinate-cytochrome c oxidoreductase, NADH-cytochrome c oxidoreductase and malate dehydrogenase were observed during glucose de-repression of Schizosaccharomyces pombe. 2. The cell-cycle of this organism was analysed by three different methods: (a) harvesting of cells at intervals from a synchronous culture, (b) separation of cells by rate-zonal centrifugation into different size classes and (c) separation of cells by isopycnic-zonal centrifugation into different density classes. 3. Measurement of enzyme activities during the cell-cycle showed that all the enzymes assayed [cytochrome c oxidase, catalase, acid p-nitrophenylphosphatase, NADH-dehydrogenase, NADH-cytochrome c oxidoreductase, NADPH-cytochrome c oxidoreductase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase (NADP) and fumarate hydratase] show periodic expression as ;peaks'. 4. Cytochrome c oxidase shows a single maximum at 0.67 of a cycle, whereas succinate dehydrogenase exhibits two maxima separated by 0.5 of a cell-cycle. 5. All other enzymes assayed showed two distinct maxima per cell-cycle; for catalase, malate dehydrogenase and NADPH-cytochrome c oxidoreductase there is the possibility of multiple fluctuations. 6. The single maximum of cytochrome c oxidase appears at a similar time in the cycle to one maximum of each of the other enzymes studied, except for NADH dehydrogenase. 7. These results are discussed with reference to previous observations on the expression of enzyme activities during the cell-cycle of yeasts.

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009596 Nitrophenols PHENOLS carrying nitro group substituents. Nitrophenol
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002501 Centrifugation, Zonal Centrifugation using a rotating chamber of large capacity in which to separate cell organelles by density-gradient centrifugation. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Zonal,Zonal Centrifugation,Zonal Centrifugations

Related Publications

R K Poole, and D Lloyd
December 1992, Canadian journal of microbiology,
R K Poole, and D Lloyd
January 2004, Methods in molecular biology (Clifton, N.J.),
R K Poole, and D Lloyd
October 1978, Journal of cell science,
R K Poole, and D Lloyd
January 1959, Experimental cell research,
R K Poole, and D Lloyd
January 2022, Methods in molecular biology (Clifton, N.J.),
R K Poole, and D Lloyd
October 1991, Current opinion in genetics & development,
Copied contents to your clipboard!