Effects of lithium ions on electrical activity in sympathetic ganglia of the bullfrog. 1974

K Koketsu, and K Yamamoto

1 The mode of action of lithium on electrical activity in the sympathetic ganglia of the bullfrog has been studied by recording extracellular and intracellular potential changes. Changes in nerve conduction and various types of synaptic transmission were studied when sodium ions in the external solution were totally replaced by equimolar concentrations of lithium ions and also when lithium ions were added to the external Ringer solution.2 Nerve conduction and nicotinic transmission in sympathetic ganglia were completely blocked in sodium-free sucrose solution, but were restored when the preparations were transferred to a sodium-free lithium solution.3 In the sodium-free lithium solution, the slow excitatory postsynaptic potential (e.p.s.p.) and muscarinic acetylcholine-depolarization were restored while the slow inhibitory postsynaptic potential (i.p.s.p.) and the muscarinic acetylcholine-hyperpolarization were not restored. Furthermore, the early after-discharges were accelerated and the inhibition of after-discharges was eliminated. These results support the hypothetical concept that the slow i.p.s.p. is generated by an activation of the electrogenic sodium pump.4 In the sodium-free lithium solution, restoration of nerve conduction and synaptic transmission were transient phenomena; both conduction and transmission were gradually blocked when preparations were soaked in the solution for long periods. The blockade appeared to be due to membrane depolarization.5 When lithium ions (20 mM) were added to the Ringer solution, nicotinic transmission was depressed. The slow e.p.s.p. was also depressed, but less so than the slow i.p.s.p. The early after-discharge was, however, accelerated; presumably due to the marked depression of the slow i.p.s.p. in this solution.6 Changes in synaptic transmission in Ringer solution containing lithium ions could be explained by membrane depolarization, a reduction of acetylcholine release and a depression of the electrogenic sodium pump.7 All results obtained in the present experiments could be explained by supposing that lithium ions are able to substitute for sodium ions in passive ionic membrane transport dependent on electrochemical energy but not in active ionic membrane transport dependent on metabolic energy.

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005725 Ganglia, Autonomic Clusters of neurons and their processes in the autonomic nervous system. In the autonomic ganglia, the preganglionic fibers from the central nervous system synapse onto the neurons whose axons are the postganglionic fibers innervating target organs. The ganglia also contain intrinsic neurons and supporting cells and preganglionic fibers passing through to other ganglia. Autonomic Ganglia,Ganglion, Autonomic,Autonomic Ganglion
D005730 Ganglionic Blockers Agents having as their major action the interruption of neural transmission at nicotinic receptors on postganglionic autonomic neurons. Because their actions are so broad, including blocking of sympathetic and parasympathetic systems, their therapeutic use has been largely supplanted by more specific drugs. They may still be used in the control of blood pressure in patients with acute dissecting aortic aneurysm and for the induction of hypotension in surgery. Ganglionic Blocking Agents,Ganglioplegic Agents,Blocking Agents, Ganglionic,Ganglionic Blockaders,Agents, Ganglionic Blocking,Agents, Ganglioplegic,Blockaders, Ganglionic,Blockers, Ganglionic
D005731 Ganglionic Stimulants Agents that mimic neural transmission by stimulation of the nicotinic receptors on postganglionic autonomic neurons. Drugs that indirectly augment ganglionic transmission by increasing the release or slowing the breakdown of acetylcholine or by non-nicotinic effects on postganglionic neurons are not included here nor are the nonspecific cholinergic agonists. Stimulants, Ganglionic

Related Publications

K Koketsu, and K Yamamoto
January 1980, Proceedings of the Western Pharmacology Society,
K Koketsu, and K Yamamoto
August 1967, The Journal of pharmacology and experimental therapeutics,
K Koketsu, and K Yamamoto
January 1974, Japanese journal of pharmacology,
K Koketsu, and K Yamamoto
January 1981, The Kurume medical journal,
K Koketsu, and K Yamamoto
August 1982, European journal of pharmacology,
K Koketsu, and K Yamamoto
October 1985, The Journal of pharmacology and experimental therapeutics,
K Koketsu, and K Yamamoto
March 1996, The Journal of physiology,
K Koketsu, and K Yamamoto
December 1982, Brain research,
Copied contents to your clipboard!