| D008854 |
Microscopy, Electron |
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. |
Electron Microscopy |
|
| D008962 |
Models, Theoretical |
Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. |
Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies |
|
| D008970 |
Molecular Weight |
The sum of the weight of all the atoms in a molecule. |
Molecular Weights,Weight, Molecular,Weights, Molecular |
|
| D009435 |
Synaptic Transmission |
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. |
Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic |
|
| D009474 |
Neurons |
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. |
Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron |
|
| D001921 |
Brain |
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. |
Encephalon |
|
| D001923 |
Brain Chemistry |
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. |
Chemistry, Brain,Brain Chemistries,Chemistries, Brain |
|
| D002262 |
Carboxy-Lyases |
Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. |
Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases |
|
| D002531 |
Cerebellum |
The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. |
Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons |
|
| D003445 |
Crustacea |
A large subphylum of mostly marine ARTHROPODS containing over 42,000 species. They include familiar arthropods such as lobsters (NEPHROPIDAE), crabs (BRACHYURA), shrimp (PENAEIDAE), and barnacles (THORACICA). |
Ostracoda,Ostracods,Crustaceas,Ostracod,Ostracodas |
|