Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. 1974

S R Zukin, and A B Young, and S H Snyder

[(3)H]Gamma-aminobutyric acid (GABA) binds to synaptic membrane fractions of rat brain in a selective fashion representing an interaction with postsynaptic GABA receptors. Inhibition of [(3)H]GABA binding by a variety of amino acids closely parallels their ability to mimic the synaptic inhibitory actions of GABA and does not correlate with their relative affinity for the presynaptic synaptosomal GABA uptake system. [(3)H]GABA binding is saturable with an affinity constant of about 0.1 muM. The GABA antagonist bicuculline inhibits [(3)H]GABA binding with half maximal effects at 5 muM, whereas it requires a concentration of 0.5 mM to reduce synaptosomal GABA uptake by 50%. In subcellular fractionation experiments [(3)H]GABA binding is most enriched in crude synaptic membranes. [(3)H]GABA binding is greatest in the cerebellum, least in the spinal cord and medulla oblongatapons, with intermediate values in the thalamus, hippocampus, hypothalamus, cerebral cortex, midbrain, and corpus striatum.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004149 Dioxoles
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000613 Aminobutyrates Derivatives of BUTYRIC ACID that contain one or more amino groups attached to the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure. Aminobutyric Acids,Aminobutyric Acid,Acid, Aminobutyric,Acids, Aminobutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S R Zukin, and A B Young, and S H Snyder
September 1985, Neuroscience letters,
S R Zukin, and A B Young, and S H Snyder
March 1988, The Journal of pharmacology and experimental therapeutics,
S R Zukin, and A B Young, and S H Snyder
April 1983, Acta medica Okayama,
S R Zukin, and A B Young, and S H Snyder
January 1993, Psychopharmacology series,
S R Zukin, and A B Young, and S H Snyder
January 1986, Neirofiziologiia = Neurophysiology,
S R Zukin, and A B Young, and S H Snyder
September 1961, Biochimica et biophysica acta,
S R Zukin, and A B Young, and S H Snyder
March 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
S R Zukin, and A B Young, and S H Snyder
October 1958, Nature,
S R Zukin, and A B Young, and S H Snyder
March 1981, Molecular pharmacology,
Copied contents to your clipboard!