Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine. 1974

H M Gerschenfeld, and D Paupardin-Tritsch

1. Molluscan neurones have been found to show six different types of response (three excitatory and three inhibitory) to the iontophoretic application of 5-hydroxytryptamine (5-HT). The pharmacological properties of the receptors and the ionic mechanisms associated with these responses have been analysed.2. Four of the responses to 5-HT (named A, A', B and C) are consequent upon an increase in membrane conductance whereas the other two (named alpha and beta) are caused by a decrease in membrane conductance.3. The A-response to 5-HT consists of a ;fast' depolarization due to an increase mainly in Na(+)-conductance; the A'-response is a ;slow' depolarization also associated with a Na(+)-conductance increase. Receptors mediating the A- and A'-depolarizations have different pharmacological properties and may exist side by side on the same neurone.4. Both the B- and C-responses are inhibitory. The B-response is a ;slow' hyperpolarization due to an increase in K(+)-conductance, the C-response is a fast hyperpolarization associated with an increase in Cl(-)-conductance.5. The alpha-response to 5-HT is a depolarization which becomes reduced in amplitude with cell hyperpolarization and reverses at -75 mV; it is caused by a decrease in K(+)-conductance. The beta-response is an hyperpolarization which increases in amplitude with cell hyperpolarization and reverses at -20/-30 mV. It results from a decrease in conductance to both Na(+) and K(+) ions.6. The receptors involved in the 5-HT responses associated with a conductance increase may be recognized by the action of specific antagonists: 7-methyltryptamine blocks only the A-receptors, 5-methoxygramine only the B-receptors and neostigmine only the C-receptors. Curare blocks the A- and C-receptors and bufotenine, the A-, A'- and B-receptors. No specific antagonists have yet been found for the 5-HT responses caused by a conductance decrease.7. The significance of the multiplicity of receptors is discussed. Their functional significance at synapses is analysed in the following paper.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008738 Methyl Ethers A group of compounds that contain the general formula R-OCH3. Ethers, Methyl
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002027 Bufotenin A hallucinogenic serotonin analog found in frog or toad skins, mushrooms, higher plants, and mammals, especially in the brains, plasma, and urine of schizophrenics. Bufotenin has been used as a tool in CNS studies and misused as a psychedelic. Dimethylserotonin,Mappine,5-Hydroxy-N,N-dimethyltryptamine,Bufotenine,Mappin,N,N-Dimethyl-5-hydroxytryptamine,5 Hydroxy N,N dimethyltryptamine,N,N Dimethyl 5 hydroxytryptamine

Related Publications

H M Gerschenfeld, and D Paupardin-Tritsch
August 1954, Journal of cellular and comparative physiology,
H M Gerschenfeld, and D Paupardin-Tritsch
June 1973, British journal of pharmacology,
H M Gerschenfeld, and D Paupardin-Tritsch
August 1966, The Journal of physiology,
H M Gerschenfeld, and D Paupardin-Tritsch
January 1978, Comparative biochemistry and physiology. C: Comparative pharmacology,
H M Gerschenfeld, and D Paupardin-Tritsch
July 1967, Nature,
H M Gerschenfeld, and D Paupardin-Tritsch
October 2016, Aquatic toxicology (Amsterdam, Netherlands),
H M Gerschenfeld, and D Paupardin-Tritsch
November 1974, British journal of pharmacology,
Copied contents to your clipboard!