On the transmitter function of 5-hydroxytryptamine at excitatory and inhibitory monosynaptic junctions. 1974

H M Gerschenfeld, and D Paupardin-Tritsch

1. Two symmetrical giant neurones located in the cerebral ganglion of Aplysia californica contain 4-6 p-mole 5-hydroxytryptamine (5-HT) and are able to synthesize it (Weinreich, McCaman, McCaman & Vaughn, 1973; Eisenstadt, Goldman, Kandel, Koike, Koester & Schwartz, 1973). Stimulation of each of these neurones evokes excitatory and inhibitory potentials in various cells of the ipsilateral buccal ganglion. In nine buccal neurones it evokes excitatory potentials, in other three, ;classical' inhibitory potentials and in one neurone an ;atypical' inhibitory potential.2. The connexion between the giant cerebral neurone and the cells receiving either an excitatory or a ;classical' inhibitory input from it are monosynaptic. TEA injection into the cerebral giant neurone, which prolongs the presynaptic spike, causes a gradual increase of both the excitatory and the inhibitory potentials. On the other hand, high Ca(2+) media, which block polysynaptic pathways, do not suppress these synaptic potentials.3. The iontophoretic application of 5-HT to the buccal neurones receiving excitatory input from the giant cerebral neurones evokes depolarizations showing the pharmacological properties of both A- and A'-responses to 5-HT (see preceding paper). Antagonists which block only the A-receptors (curare, 7-methyltryptamine, LSD 25) block partially the synaptic depolarizing potentials. Bufotenine, which blocks both the A- and A'-receptors, completely blocks the excitatory potentials. Thus, the post-synaptic membrane of these buccal neurones appears to be endowed with both A- and A'-receptors to 5-HT.4. The ;classical' inhibitory potentials elicited in three buccal neurones are hyperpolarizations which reverse at - 80 mV and are due to an increase in K(+)-conductance. The iontophoretic application of 5-HT to these post-synaptic neurones evokes hyperpolarizing B-responses which are also generated by an increase in K(+)-conductance. Antagonists which block the B-responses (bufotenine, methoxygramine) also block the inhibitory potentials.5. The ;atypical' inhibitory potential evoked in one buccal neurone consists in an hyperpolarization which increases in amplitude with cell hyperpolarization. Iontophoretic application of 5-HT to this buccal cell evokes an hyperpolarizing beta-response which also increases in amplitude with cell polarization and results from a decrease in both Na(+)- and K(+)- conductances. The monosynaptic character of the ;atypical' inhibitory potential is not yet fully proven.6. It can be concluded that the excitatory and inhibitory synaptic effects evoked in the buccal neurones by the stimulation of the 5-HT-containing-giant cerebral neurones are very likely mediated by 5-HT.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008738 Methyl Ethers A group of compounds that contain the general formula R-OCH3. Ethers, Methyl
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002027 Bufotenin A hallucinogenic serotonin analog found in frog or toad skins, mushrooms, higher plants, and mammals, especially in the brains, plasma, and urine of schizophrenics. Bufotenin has been used as a tool in CNS studies and misused as a psychedelic. Dimethylserotonin,Mappine,5-Hydroxy-N,N-dimethyltryptamine,Bufotenine,Mappin,N,N-Dimethyl-5-hydroxytryptamine,5 Hydroxy N,N dimethyltryptamine,N,N Dimethyl 5 hydroxytryptamine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

H M Gerschenfeld, and D Paupardin-Tritsch
January 1992, Neuron,
H M Gerschenfeld, and D Paupardin-Tritsch
December 2008, European journal of pharmacology,
H M Gerschenfeld, and D Paupardin-Tritsch
September 1967, American journal of obstetrics and gynecology,
H M Gerschenfeld, and D Paupardin-Tritsch
April 1988, Journal of the autonomic nervous system,
H M Gerschenfeld, and D Paupardin-Tritsch
January 2020, Frontiers in neuroanatomy,
H M Gerschenfeld, and D Paupardin-Tritsch
February 1986, British journal of pharmacology,
H M Gerschenfeld, and D Paupardin-Tritsch
November 1990, British journal of pharmacology,
H M Gerschenfeld, and D Paupardin-Tritsch
November 1984, European journal of pharmacology,
H M Gerschenfeld, and D Paupardin-Tritsch
February 1978, Federation proceedings,
Copied contents to your clipboard!