Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles. 1968

G J Nossal, and A Abbot, and J Mitchell, and Z Lummus

This paper describes the trapping of antigen in lymphoid follicles of rat popliteal lymph nodes as revealed by electron microscopic radioautographs following injection of (125)I-labeled Salmonella adelaide flagella and other materials. The antigen was taken up vigorously, and to an approximately equal extent, by both primary and secondary follicles. The rate of uptake was faster in preimmunized than in virgin adult rats. The bulk of the antigen in follicles was extracellular, and persisted in this location for at least 3 wk. Label was most frequently found at or near the surface of fine cell processes. Many of these were branches of dendritic follicular reticular cells. Such processes interdigitated with equally fine processes of lymphocytes, creating an elaborate meshwork. In some cases, antigen was found between lymphocytes which appeared to be in close apposition. Occasionally, a few grains appeared over lymphocyte nuclei and study of serial sections suggested that this probably represented true entry of small amounts of antigen into lymphocytes. The characteristic "tingible body" macrophages (TBM) of germinal centers appeared to play only a secondary role in follicular antigen retention. They showed degrees of labeling over their phagocytic inclusions varying from negligible to moderately heavy. Moreover, follicles lacking or poor in TBM retained antigen just as effectively as those containing numerous TBM. The hypothesis is advanced that TBM may be derived from monocytes that migrate down from the circular sinus. Follicular localization of three other materials was also studied, though not in such detail. These were (125)I-HSA complexed to anti-HSA: (125)I-labeled autologous IgG; and (125)I-monomeric flagellin. All of these showed the basic features of intercellular, membrane-associated deposition noted with (125)I-flagella. The role of follicular antigen depots in immune induction is discussed. The tentative conclusion is reached that follicular antigen in a primary follicle encounters natural antibody on the surface of certain antigen-reactive lymphocytes. The resultant reaction causes blast cell transformation and eventually the genesis of a germinal center.

UI MeSH Term Description Entries
D007456 Iodine Isotopes Stable iodine atoms that have the same atomic number as the element iodine, but differ in atomic weight. I-127 is the only naturally occurring stable iodine isotope. Isotopes, Iodine
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D005260 Female Females
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D005719 gamma-Globulins Serum globulins that migrate to the gamma region (most positively charged) upon ELECTROPHORESIS. At one time, gamma-globulins came to be used as a synonym for immunoglobulins since most immunoglobulins are gamma globulins and conversely most gamma globulins are immunoglobulins. But since some immunoglobulins exhibit an alpha or beta electrophoretic mobility, that usage is in decline. gamma-Globulin,gamma Globulin,gamma Globulins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
January 1988, Histology and histopathology,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
June 1964, The Australian journal of experimental biology and medical science,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
January 1977, Archives of pathology & laboratory medicine,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
November 1973, Immunology,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
December 1978, Klinicheskaia khirurgiia,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
December 1967, The Australian journal of experimental biology and medical science,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
January 1982, Advances in experimental medicine and biology,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
April 2008, International immunology,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
April 2004, Medical science monitor : international medical journal of experimental and clinical research,
G J Nossal, and A Abbot, and J Mitchell, and Z Lummus
October 2004, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!