Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. 1978

K Weber, and P C Rathke, and M Osborn

Electron microscopy and indirect immunofluorescence microscopy using monospecific tubulin antibodies were performed in parallel on glutaraldehyde-fixed tissue culture cells without osmium fixation. In order to reduce the excess aldehyde groups of the strongly crosslinked cellular matrix, which normally interfere with subsequent immunofluorescence microscopy, a mild NaBH(4) treatment was introduced during or after the dehydration steps. Cells processed through the NaBH(4) step show, in transmission electron microscopy, normal cytoplasmic microtubules approximately 250 A in diameter. When such cells are subjected to indirect immunofluorescence microscopy using monospecific tubulin antibody they reveal a complex system of unbroken, fine, fluorescent fibers traversing the cytoplasm between the perinuclear space and the plasma membrane. Thin sections of cells processed through the indirect immunofluorescence procedure show antibody-decorated microtubules with a diameter of approximately 600 A. This decoration is not obtained when non-immune IgGs are used instead of monospecific antitubulin IgGs. Thus, a direct comparison of cytoplasmic microtubules in glutaraldehyde-fixed cells by both electron microscopy and immunofluorescence microscopy can be obtained.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005404 Fixatives Agents employed in the preparation of histologic or pathologic specimens for the purpose of maintaining the existing form and structure of all of the constituent elements. Great numbers of different agents are used; some are also decalcifying and hardening agents. They must quickly kill and coagulate living tissue. Fixative,Pickling Agents,Agents, Pickling
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005976 Glutaral One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative. Glutaraldehyde,Cidex,Diswart,Gludesin,Glutardialdehyde,Glutarol,Korsolex,Novaruca,Sekumatic,Sonacide,Sporicidin
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin

Related Publications

K Weber, and P C Rathke, and M Osborn
November 1979, Stain technology,
K Weber, and P C Rathke, and M Osborn
October 1979, European journal of cell biology,
K Weber, and P C Rathke, and M Osborn
January 1982, Medical laboratory sciences,
K Weber, and P C Rathke, and M Osborn
January 1964, The American journal of medical technology,
K Weber, and P C Rathke, and M Osborn
January 1969, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
K Weber, and P C Rathke, and M Osborn
January 1970, Verhandlungen der Anatomischen Gesellschaft,
K Weber, and P C Rathke, and M Osborn
March 1945, The Journal of experimental medicine,
K Weber, and P C Rathke, and M Osborn
January 1987, Acta pathologica japonica,
K Weber, and P C Rathke, and M Osborn
January 2010, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!