Rapid radiometric susceptibility testing of Mycobacterium tuberculosis. 1978

J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner

A 48-hour radiometric test for determining the drug susceptibility of Mycobacterium tuberculosis has been developed. The test is based on the measurement of 14CO2 produced by the oxidation of formate labeled with carbon-14. The test system uses 5 X 10(7) organisms in 1 ml of Middlebrook 7H9 medium plus albumin-dextrose-catalase enrichment and 1 muCi of [14C]formate. The 14CO2 produced is measured in an ionization chamber at 24-, 48-, and 72-hour intervals, with and without the addition of antituberculous drugs. Isoniazid, streptomycin, rifampin, and ethambutol were each tested at 3 concentrations by the radiometric method and the reference (agar dilution) method. Six standard strains and 21 patient isolates were compared by both methods. Production of 14CO2 was quantitatively decreased in the presence of drugs that inhibit the organism. The radiometric method requires 2 days; the agar dilution, 14 to 21 days.

UI MeSH Term Description Entries
D007538 Isoniazid Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. Isonicotinic Acid Hydrazide,Ftivazide,Isonex,Isonicotinic Acid Vanillylidenehydrazide,Phthivazid,Phthivazide,Tubazide,Acid Vanillylidenehydrazide, Isonicotinic,Hydrazide, Isonicotinic Acid,Vanillylidenehydrazide, Isonicotinic Acid
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D004977 Ethambutol An antitubercular agent that inhibits the transfer of mycolic acids into the cell wall of the tubercle bacillus. It may also inhibit the synthesis of spermidine in mycobacteria. The action is usually bactericidal, and the drug can penetrate human cell membranes to exert its lethal effect. (From Smith and Reynard, Textbook of Pharmacology, 1992, p863) Dexambutol,EMB-Fatol,EMB-Hefa,Etambutol Llorente,Ethambutol Hydrochloride,Etibi,Miambutol,Myambutol,EMB Fatol,EMB Hefa,Hydrochloride, Ethambutol,Llorente, Etambutol
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D000995 Antitubercular Agents Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy. Anti-Tuberculosis Agent,Anti-Tuberculosis Agents,Anti-Tuberculosis Drug,Anti-Tuberculosis Drugs,Antitubercular Agent,Antitubercular Drug,Tuberculostatic Agent,Tuberculostatic Agents,Antitubercular Drugs,Agent, Anti-Tuberculosis,Agent, Antitubercular,Agent, Tuberculostatic,Anti Tuberculosis Agent,Anti Tuberculosis Agents,Anti Tuberculosis Drug,Anti Tuberculosis Drugs,Drug, Anti-Tuberculosis,Drug, Antitubercular
D012293 Rifampin A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160) Rifampicin,Benemycin,Rifadin,Rimactan,Rimactane,Tubocin

Related Publications

J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
December 1984, Zhonghua jie he he hu xi xi ji bing za zhi = Chinese journal of tuberculosis and respiratory diseases,
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
January 1989, Research in microbiology,
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
October 1982, The Journal of antimicrobial chemotherapy,
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
May 1981, Journal of clinical microbiology,
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
November 1991, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
December 1983, Journal of clinical microbiology,
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
April 1995, Journal of chemotherapy (Florence, Italy),
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
April 1981, The American review of respiratory disease,
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
December 1986, Antimicrobial agents and chemotherapy,
J A Kertcher, and M F Chen, and P Charache, and C C Hwangbo, and E E Camargo, and P A McIntyre, and H N Wagner
May 1988, Diagnostic microbiology and infectious disease,
Copied contents to your clipboard!