Osmotically induced increase in thermal resistance of heat-sensitive, dipicolinic acid-less spores of Bacillus cereus Ht-8. 1978

K Bhothipaksa, and F F Busta

Thermal resistance in heat-sensitive, dipicolinic acid (DPA)-less spores of Bacillus cereus Ht-8 heated in sucrose solutions increased at and above a concentration of 2 M sucrose. The decimal reduction times at 75 degrees C for spores heated in 0.0, 1.8, 2.2, and 2.6 M sucrose were 2.0, 2.8, 4.5, and 12 min, respectively. Maltose, fructose, and glucose increased heat resistance above that observed in water but did not elevate resistance to the level observed with sucrose at the same osmolality. Cation-induced loss of thermal resistance in chemically sensitized spores was reversed in the presence of sucrose. Spores germinated in brain heart infusion were resistant when heated in sucrose. In the presence of sucrose, spores exhibited an increase in optical density at 700 nm. Electron micrographs of the DPA-less spores suspended in 2.2 M sucrose revealed a shrinkage of outer coats and exosporium membranes. The results suggested that the osmotic property of sugars increased thermal resistance in DPA-less spores. The osmotic pressure exerted by sugars may be similar to the pressure that usually exists within the cortex of normal spores containing DPA and may cause the dehydration of the protoplast and the consequent thermal resistance. The role of dehydration and the nonessential nature of DPA for thermal resistance in spores were confirmed.

UI MeSH Term Description Entries
D009997 Osmotic Pressure The pressure required to prevent the passage of solvent through a semipermeable membrane that separates a pure solvent from a solution of the solvent and solute or that separates different concentrations of a solution. It is proportional to the osmolality of the solution. Osmotic Shock,Hypertonic Shock,Hypertonic Stress,Hypotonic Shock,Hypotonic Stress,Osmotic Stress,Hypertonic Shocks,Hypertonic Stresses,Hypotonic Shocks,Hypotonic Stresses,Osmotic Pressures,Osmotic Shocks,Osmotic Stresses,Pressure, Osmotic,Pressures, Osmotic,Shock, Hypertonic,Shock, Hypotonic,Shock, Osmotic,Shocks, Hypertonic,Shocks, Hypotonic,Shocks, Osmotic,Stress, Hypertonic,Stress, Hypotonic,Stress, Osmotic,Stresses, Hypertonic,Stresses, Hypotonic,Stresses, Osmotic
D010848 Picolinic Acids Compounds with general formula C5H4N(CO2H) derived from PYRIDINE, having a carboxylic acid substituent at the 2-position. Acids, Picolinic
D002122 Calcium Chloride A salt used to replenish calcium levels, as an acid-producing diuretic, and as an antidote for magnesium poisoning. Calcium Chloride Dihydrate,Calcium Chloride, Anhydrous
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D001409 Bacillus cereus A species of rod-shaped bacteria that is a common soil saprophyte. Its spores are widespread and multiplication has been observed chiefly in foods. Contamination may lead to food poisoning.
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose

Related Publications

K Bhothipaksa, and F F Busta
January 1962, Journal of bacteriology,
K Bhothipaksa, and F F Busta
April 1971, Journal of bacteriology,
K Bhothipaksa, and F F Busta
December 1967, Journal of bacteriology,
K Bhothipaksa, and F F Busta
March 1973, Photochemistry and photobiology,
K Bhothipaksa, and F F Busta
April 1974, Journal of bacteriology,
K Bhothipaksa, and F F Busta
August 1957, Canadian journal of microbiology,
K Bhothipaksa, and F F Busta
January 1974, Zeitschrift fur allgemeine Mikrobiologie,
K Bhothipaksa, and F F Busta
November 1970, Journal of general microbiology,
K Bhothipaksa, and F F Busta
March 1955, Journal of bacteriology,
Copied contents to your clipboard!