Isolation, purification, and properties of mouse heavy-chain immunoglobulin mRNAs. 1978

K B Marcu, and O Valbuena, and R P Perry

A procedure is described for the isolation of highly purified heavy-chain immunoglobulin mRNAs from a variety of mouse plasmacytomas (IgA, IgG, and IgM producers). The use of fresh tissue and the rapid isolation and direct extraction of membrane-bound polyribosomes were found to be essential in obtaining large quantities of undegraded heavy-chain mRNAs. The individual mRNAs were purified by two cycles of oligo(dT)-cellulose chromatography, sodium dodecyl sulfate--sucrose gradient centrifugation, and electrophoresis on 98% formamide containing polyacrylamide gels. When added to a cell-free protein-synthesizing system from wheat germ, the MPC-11 gamma2b and H2020 alpha heavy-chain mRNAs efficiently directed the synthesis of a predominant product of 55 000 molecular weight, while the synthesis of a 70 000 dalton protein in addition to other lower molecular weight polypeptides were observed with MOPC 3741 mu mRNA. All of these proteins were immunoprecipitable with class-specific heavy-chain antisera, and in the case of the gamma2b in vitro products good correspondence in a comparative trypsin--chymotrypsin fingerpring with in vivo labeled gamma2b heavy chain was observed. The gamma2b and a alpha heavy-chain mRNAs possessed a chain length of approximately 1800 nucleotides and the mu mRNA a size of approximately 2150 nucleotides when examined under stringent denaturation conditions. The purities of the alpha, gamma2b, and mu mRNAs were estimated to be 60--80%, 50--70%, and 50--83%, respectively, on the basis of their hybridization rates with cDNA probes in comparison to mRNA standards of known complexity. Heavy-chain mRNAs of the same class isolated from different mouse strains (Balb/C or NZB) display no detectable sequence differences in cross hybridization experiments, even though the cDNA--mRNA hybrids are submitted to stringent S1 nuclease digestion. These results indicate that allotypic determinants represent only a minor fraction of the heavy-chain constant region sequence in the mouse.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010954 Plasmacytoma Any discrete, presumably solitary, mass of neoplastic PLASMA CELLS either in BONE MARROW or various extramedullary sites. Plasma Cell Tumor,Plasmocytoma,Plasma Cell Tumors,Plasmacytomas,Plasmocytomas,Tumor, Plasma Cell,Tumors, Plasma Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

K B Marcu, and O Valbuena, and R P Perry
April 1973, Proceedings of the National Academy of Sciences of the United States of America,
K B Marcu, and O Valbuena, and R P Perry
June 1980, European journal of biochemistry,
K B Marcu, and O Valbuena, and R P Perry
November 1975, Proceedings of the National Academy of Sciences of the United States of America,
K B Marcu, and O Valbuena, and R P Perry
October 1992, Veterinary immunology and immunopathology,
K B Marcu, and O Valbuena, and R P Perry
January 1981, Nature,
K B Marcu, and O Valbuena, and R P Perry
April 1980, Nucleic acids research,
K B Marcu, and O Valbuena, and R P Perry
September 1973, Nature: New biology,
K B Marcu, and O Valbuena, and R P Perry
January 1976, European journal of biochemistry,
Copied contents to your clipboard!