Factors affecting energy transfer from phycobilisomes to thylakoids in Anacystis nidulans. 1978

G Harnischfeger, and G A Codd

Short illumination with white light of dark-maintained Anacystis nidulans prior to immersion in liquid nitrogen resulted in a marked change of fluorescence emission characteristics at 77 K. The fluorescence of Photosystem II-associated membrane bound pigments increases, while the emission due to phycobilins decreases. This effect seems to be due to a light-dependent alteration in the extent of contact between phycobilisomes and thylakoids, since the effect is reversible in the dark and is abolished by short glutaraldehyde fixation. The preillumination effect is not inhibited by DCMU. Emission spectra obtained with actively growing and CO2-starved cells indicate that the light-dependent increase in energy transfer from phycobilins to chlorophyll depends upon the physiological state of the cells.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D010860 Pigments, Biological Any normal or abnormal coloring matter in PLANTS; ANIMALS or micro-organisms. Biological Pigments
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D005976 Glutaral One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative. Glutaraldehyde,Cidex,Diswart,Gludesin,Glutardialdehyde,Glutarol,Korsolex,Novaruca,Sekumatic,Sonacide,Sporicidin
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

G Harnischfeger, and G A Codd
January 1973, Journal of bacteriology,
G Harnischfeger, and G A Codd
September 1978, Journal of bacteriology,
G Harnischfeger, and G A Codd
March 1978, Biochemical and biophysical research communications,
G Harnischfeger, and G A Codd
September 1982, Proceedings of the National Academy of Sciences of the United States of America,
G Harnischfeger, and G A Codd
June 1981, Biophysical journal,
G Harnischfeger, and G A Codd
April 1973, Biochimica et biophysica acta,
G Harnischfeger, and G A Codd
July 1985, Biochemical and biophysical research communications,
G Harnischfeger, and G A Codd
September 1966, Biophysical journal,
Copied contents to your clipboard!