Accumulation of messenger ribonucleic acid specific for extracellular protease in Bacillus subtilis 168. 1973

E V Semets, and A R Glenn, and B K May, and W H Elliott

Production of extracellular protease by Bacillus subtilis 168 in a medium containing low concentrations of amino acids is essentially linear, whereas in a medium containing high levels of amino acids the time course of production is biphasic. Cells harvested from the growth medium are capable of secreting enzyme for 30 min in the presence of rifampin, but the appearance of the enzyme is sensitive to chloramphenicol and pactamycin. The protease messenger ribonucleic acid (mRNA), nevertheless, appears to have a short half-life typical of bacterial messengers, and this indicates that these cells contain a relatively large pool of protease-specific mRNA. This pattern of results is identical to that observed previously with B. amyloliquefaciens. Because it has now been found in two distinct organisms, it is concluded that the accumulation of mRNA for extracellular protease, supported by rapid transcription, is a biologically meaningful phenomenon related to extracellular enzyme synthesis rather than aberrant behavior due to a transcriptional control mutation.

UI MeSH Term Description Entries
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012293 Rifampin A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160) Rifampicin,Benemycin,Rifadin,Rimactan,Rimactane,Tubocin

Related Publications

E V Semets, and A R Glenn, and B K May, and W H Elliott
November 1969, The Biochemical journal,
E V Semets, and A R Glenn, and B K May, and W H Elliott
August 1975, Journal of molecular biology,
E V Semets, and A R Glenn, and B K May, and W H Elliott
August 1974, Journal of bacteriology,
E V Semets, and A R Glenn, and B K May, and W H Elliott
April 1972, The Journal of biological chemistry,
E V Semets, and A R Glenn, and B K May, and W H Elliott
May 1971, The Journal of biological chemistry,
E V Semets, and A R Glenn, and B K May, and W H Elliott
February 1999, Molecular microbiology,
E V Semets, and A R Glenn, and B K May, and W H Elliott
December 1974, The Journal of biological chemistry,
E V Semets, and A R Glenn, and B K May, and W H Elliott
November 1969, Journal of bacteriology,
E V Semets, and A R Glenn, and B K May, and W H Elliott
November 2018, Microbiology resource announcements,
E V Semets, and A R Glenn, and B K May, and W H Elliott
December 1974, Journal of bacteriology,
Copied contents to your clipboard!