Phycobilisomes in blue-green algae. 1974

R B Wildman, and C C Bowen

Fifteen species of freshwater blue-green algae, including unicellular, filamentous, and colonial forms, were subjected to a variety of fixatives, fixation conditions, and stains for comparison of the preservation of phycobilisomes. Absorption spectra of the corresponding in vivo and released photosynthetic pigments, in 10 of the species that were maintained in culture, demonstrated the presence of phycocyanin in all 10 species and phycoerythrin in only 2 of them. Spectroscope and electron microscope evidence was obtained for localization of phycobiliproteins in phycobilisomes of Nostoc muscorum. Phycobilisomes were observed in all species examined in situ, strenghening the hypothesis that phycobilisomes are common to all phycobiliprotein-containing photosynthetic blue-green algae.

UI MeSH Term Description Entries
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D010860 Pigments, Biological Any normal or abnormal coloring matter in PLANTS; ANIMALS or micro-organisms. Biological Pigments
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D005618 Fresh Water Water containing no significant amounts of salts, such as water from RIVERS and LAKES. Freshwater,Fresh Waters,Freshwaters,Water, Fresh,Waters, Fresh
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae

Related Publications

R B Wildman, and C C Bowen
March 1981, Biokhimiia (Moscow, Russia),
R B Wildman, and C C Bowen
January 1979, Biology bulletin of the Academy of Sciences of the USSR. Akademiia nauk SSSR,
R B Wildman, and C C Bowen
April 2024, The Veterinary clinics of North America. Equine practice,
R B Wildman, and C C Bowen
May 1992, The Medical journal of Australia,
R B Wildman, and C C Bowen
June 1966, Scientific American,
R B Wildman, and C C Bowen
February 1976, Archives of microbiology,
R B Wildman, and C C Bowen
January 1985, The Journal of emergency medicine,
R B Wildman, and C C Bowen
January 1972, Archiv fur Mikrobiologie,
R B Wildman, and C C Bowen
August 1969, Journal of bacteriology,
Copied contents to your clipboard!