Mitochondrial and cytoplasmic ribosomes from Tetrahymena pyriformis. Correlative analysis by gel electrophoresis and electron microscopy. 1974

J J Curgy, and G Ledoigt, and B J Stevens, and J André

Mitochondrial and cytoplasmic ribosomes from Tetrahymena pyriformis have been isolated and studied by the techniques of polyacrylamide gel electrophoresis and electron microscopy used in conjunction. Although the two ribosome types show the same coefficient of sedimentation (80S) in sucrose gradients, they can be distinguished by gel electrophoresis: mitoribosomes migrate in a single band, considerably slower than the cytoribosome band. Electron microscope observations of negatively stained cytoribosomes show typical rounded or triangular profiles, about 275 x 230 A; mitoribosome profiles are much larger and clearly elongate, about 370 x 240 A. An electron-opaque spot delimits two nearly equal size subunits. In mixtures of mito- and cytoribosomes, each type can be recognized by its characteristic electrophoretic mobility and by its distinctive fine structure. Cytoribosomal 60S and 40S subunits each produce a distinct electrophoretic band. On the contrary, neither electrophoretic analysis, using a variety of conditions, nor electron microscopy is able to discern two different subunit types in the single 55S mitoribosomal subunit peak. Electrophoretic analysis of RNA shows that both ribosomal RNA species are present in the mitoribosomal subunit fraction. These results establish that mitoribosomes from T. pyriformis dissociate into two subunits endowed with the same sedimentation coefficient, the same electrophoretic mobility, and a similar morphology.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

J J Curgy, and G Ledoigt, and B J Stevens, and J André
November 1970, Journal of molecular biology,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
September 1972, Experimental cell research,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
April 1976, Molecular & general genetics : MGG,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
December 1968, Biochimica et biophysica acta,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
May 1968, Biochimica et biophysica acta,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
August 1963, Experimental cell research,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
January 1986, Current genetics,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
January 2000, Archives of medical research,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
November 1975, Archives of biochemistry and biophysics,
J J Curgy, and G Ledoigt, and B J Stevens, and J André
August 2021, Bio-protocol,
Copied contents to your clipboard!