Mode of action illudin S. 1973

J Walser, and P F Heinstein

The effect of the antitumor antibiotic illudin S on bacterial macromolecular synthesis was investigated. Illudin S was found to be inhibitory to in vivo deoxyribonucleic acid (DNA) synthesis from thymidine. Ribonucleic acid (RNA) synthesis was inhibited only at a concentration of illudin S 10 times that which inhibited DNA synthesis. The rate of protein synthesis remained the same except for a brief initial inhibition. When thymidine triphosphate was used for in vitro DNA synthesis, inhibition by illudin S did not occur, as tested with partially purified DNA polymerase II from Escherichia coli pol A(1) (-), with E. coli DNA-dependent RNA polymerase, with E. coli pol A(1) (-) spheroplasts, and with frozen and thawed Bacillus subtilis cells. A protein fraction isolated from B. subtilis capable of forming thymidine mono-, di-, and triphosphates from thymidine was not inhibited by illudin S. Furthermore, (14)C-illudin S taken up by B. subtilis cells was reisolated unchanged, making an intracellular activation of illudin S unlikely. Therefore, an attractive hypothesis is that illudin S inhibits DNA synthesis from thymidine which does not proceed through deoxyribonucleoside triphosphates, the generally accepted substrates for DNA synthesis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012717 Sesquiterpenes Fifteen-carbon compounds formed from three isoprenoid units with general formula C15H24. Farnesanes,Farnesene,Farnesenes,Sesquiterpene,Sesquiterpene Derivatives,Sesquiterpenoid,Sesquiterpenoids,Derivatives, Sesquiterpene
D013141 Spiro Compounds Cyclic compounds that include two rings which share a single atom (usually a carbon). The simplest example of this type of compound is Spiro[2.2]pentane, which looks like a bow tie. Compounds, Spiro

Related Publications

J Walser, and P F Heinstein
May 1965, Tetrahedron,
J Walser, and P F Heinstein
July 1964, Chemical & pharmaceutical bulletin,
J Walser, and P F Heinstein
September 1965, Tetrahedron,
J Walser, and P F Heinstein
July 1964, Chemical & pharmaceutical bulletin,
J Walser, and P F Heinstein
December 1994, Xenobiotica; the fate of foreign compounds in biological systems,
J Walser, and P F Heinstein
January 1992, Xenobiotica; the fate of foreign compounds in biological systems,
J Walser, and P F Heinstein
February 2023, DNA repair,
J Walser, and P F Heinstein
November 1986, Journal of biochemistry,
J Walser, and P F Heinstein
April 1965, Journal of the American Chemical Society,
Copied contents to your clipboard!