Innervation of hippocampal explants by central catecholaminergic neurons in co-cultured fetal mouse brain stem explants. 1979

C F Dreyfus, and M D Gershon, and S M Crain

The ability of central catecholaminergic neurons to grow into and establish functional connections with the hippocampus in vitro was studied using organotypic tissue culture. Brain stem explanted from the region of the locus coeruleus and hippocampal explants, from 18-day fetal mice, were maintained as co-cultures and were also grown separately. After 1-4 weeks these tissues were analyzed by glyoxylic acid-induced histofluorescence, by light and electron microscopic radioautography after incubation with [3H]norepinephrine, and by electrophysiology. Brain stem explants exhibited specifically fluorescent catecholaminergic cell bodies and varicose fibers after 2-4 weeks in culture. In contrast, no fluorescent cells or neurites could be seen in isolated hippocampal cultures grown for 2-3 weeks in vitro. When hippocampal explants were grown near brain stem explants, catecholaminergic fibers grew out of the brain stem and entered the hippocampus. In additional experiments, co-cultures of brain stem and hippocampus were incubated with [3H]norepinephrine (0.5 micron) and the monoamine oxidase inhibitor nialamide (100 micron). Radioautographic analyses revealed that brain stem neurites which entered the hippocampus took up norepinephrine, whereas neurites in the isolated hippocampal explants did not. Electron microscopic studies of the hippocampus showed varicose axon terminals within the hippocampus to be preferentially labeled. Although close relationships could be seen between labeled axons and dendrites, junctions exhibiting the membranous modifications associated with synapses were never seen. Electrophysiological studies suggested that the catecholaminergic neurites within the hippocampus were functional. Complex synaptically mediated slow wave discharges could be evoked by electrical stimuli in isolated hippocampal explants. Introduction of the beta adrenergic antagonist propranolol (0.4-4.3 micron) did not alter, or slightly depressed, these hippocampal discharges. On the other hand, in hippocampus-brain stem co-cultures, these concentrations of propranolol enhanced the complex hippocampal responses to brain stem or hippocampal stimuli. Similar enhancement of hippocampal responses by propranolol also occurred in these cocultures after acute surgical extirpation of the brain stem explant. The data suggest, therefore, that the action of propranol was probably to block adrenergic inhibitory connections with hippocampal synaptic networks. These experiments provide morphological and electrophysiological evidence that catecholaminergic neurons from fetal mouse brain stem maintained in organotypic tissue culture can grow into and functionally innervate the hippocampus.

UI MeSH Term Description Entries
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite

Related Publications

C F Dreyfus, and M D Gershon, and S M Crain
August 1980, Brain research,
C F Dreyfus, and M D Gershon, and S M Crain
November 1990, Development (Cambridge, England),
C F Dreyfus, and M D Gershon, and S M Crain
April 2012, Molecular and cellular neurosciences,
C F Dreyfus, and M D Gershon, and S M Crain
September 1992, The Journal of pharmacology and experimental therapeutics,
C F Dreyfus, and M D Gershon, and S M Crain
January 2020, Frontiers in neuroanatomy,
C F Dreyfus, and M D Gershon, and S M Crain
May 2022, Journal of visualized experiments : JoVE,
C F Dreyfus, and M D Gershon, and S M Crain
May 2016, Histochemistry and cell biology,
C F Dreyfus, and M D Gershon, and S M Crain
June 1986, Brain research,
Copied contents to your clipboard!