Response patterns of vestibular thalamic neurons in the rhesus monkey. 1973

L Deecke, and D W Schwarz, and J M Fredrickson

UI MeSH Term Description Entries
D007758 Ear, Inner The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions. Labyrinth,Bony Labyrinth,Ear, Internal,Inner Ear,Membranous Labyrinth,Bony Labyrinths,Ears, Inner,Ears, Internal,Inner Ears,Internal Ear,Internal Ears,Labyrinth, Bony,Labyrinth, Membranous,Labyrinths,Labyrinths, Bony,Labyrinths, Membranous,Membranous Labyrinths
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic
D014725 Vestibular Nerve The vestibular part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The vestibular nerve fibers arise from neurons of Scarpa's ganglion and project peripherally to vestibular hair cells and centrally to the VESTIBULAR NUCLEI of the BRAIN STEM. These fibers mediate the sense of balance and head position. Scarpa's Ganglion,Ganglion, Scarpa's,Nerve, Vestibular,Nerves, Vestibular,Scarpa Ganglion,Scarpas Ganglion,Vestibular Nerves

Related Publications

L Deecke, and D W Schwarz, and J M Fredrickson
September 1977, Experimental brain research,
L Deecke, and D W Schwarz, and J M Fredrickson
April 1956, Journal of comparative and physiological psychology,
L Deecke, and D W Schwarz, and J M Fredrickson
January 1987, Experimental brain research,
L Deecke, and D W Schwarz, and J M Fredrickson
July 1977, Brain research,
L Deecke, and D W Schwarz, and J M Fredrickson
November 1964, Electroencephalography and clinical neurophysiology,
L Deecke, and D W Schwarz, and J M Fredrickson
January 1983, Advances in oto-rhino-laryngology,
L Deecke, and D W Schwarz, and J M Fredrickson
December 1969, Experimental neurology,
L Deecke, and D W Schwarz, and J M Fredrickson
January 1992, Experimental brain research,
L Deecke, and D W Schwarz, and J M Fredrickson
January 1970, Journal of anatomy,
Copied contents to your clipboard!