Colony formation in agar by multipotential hemopoietic cells. 1979

D Metcalf, and G R Johnson, and T E Mandel

Agar cultures of CBA fetal liver, peripheral blood, yolk sac and adult marrow cells were stimulated by pokeweed mitogen-stimulated spleen conditioned medium. Two to ten percent of the colonies developing were mixed colonies, documented by light or electron microscopy to contain erythroid, neutrophil, macrophage, eosinophil and megakaryocytic cells. No lymphoid cells were detected. Mean size for 7-day mixed colonies was 1,800-7,300 cells. When 7-day mixed colonies were recloned in agar, low levels of colony-forming cells were detected in 10% of the colonies but most daughter colonies formed were small neutrophil and/or macrophage colonies. Injection of pooled 7-day mixed colony cells to irradiated CBA mice produced low numbers of spleen colonies, mainly erythroid in composition. Karyotypic analysis using the T6T6 marker chromosome showed that some of these colonies were of donor origin. With an assumed f factor of 0.2, the mean content of spleen colony-forming cells per 7-day mixed colony was calculated to vary from 0.09 to 0.76 according to the type of mixed colony assayed. The fetal and adult multipotential hemopoietic cells forming mixed colonies in agar may be hemopoietic stem cells perhaps of a special or fetal type.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.

Related Publications

D Metcalf, and G R Johnson, and T E Mandel
June 1980, Journal of cellular physiology,
D Metcalf, and G R Johnson, and T E Mandel
June 1973, Journal of cellular physiology,
D Metcalf, and G R Johnson, and T E Mandel
December 1978, The Journal of experimental medicine,
D Metcalf, and G R Johnson, and T E Mandel
February 1985, Proceedings of the National Academy of Sciences of the United States of America,
D Metcalf, and G R Johnson, and T E Mandel
January 1976, Acta haematologica,
D Metcalf, and G R Johnson, and T E Mandel
November 1987, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
D Metcalf, and G R Johnson, and T E Mandel
February 1981, Journal of embryology and experimental morphology,
Copied contents to your clipboard!