Genetic analysis of developmental mechanisms in hydra. VI. Cellular composition of chimera hydra. 1979

T Sugiyama, and T Fujisawa

The homeostatic mechanisms that maintain constant cellular ratios in hydra tissue were studied using mutant and chimeric hydra strains. Mutants having abnormal cellular compositions are isolated through sexual inbreeding of wild hydra, as described in previous papers of this series. Chimeric hydra are produced by making use of a strain (nf-I) which lacks interstitial cells, nerve cells and nematocytes in its tissue. Reintroduction of interstitial cells from other strains (both normal and mutant) into nf-I leads to creation of chimeric strains having epithelial cell lineages from one strain (nf-I) and interstitial cell lineages from others. Analyses and comparisons of the cellular compositions of all these strains revealed that the numbers of nerve or interstitial cells in the chimeras were very similar to (statistically significantly correlated with) those in their interstitial cell donors. Since chimeras and their interstitial cell donors share the same interstitial cell lineages, this suggests that interstitial cells or their derivatives (nerves and nematocytes) play major roles in determining the nerve and interstitial cell levels in the hydra tissue. It is suggested that some form of homeostatic feedback mechanisms are probably involved in regulating the levels of these cell types.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002678 Chimera An individual that contains cell populations derived from different zygotes. Hybrids,Chimeras,Hybrid
D003239 Connective Tissue Cells A group of cells that includes FIBROBLASTS, cartilage cells, ADIPOCYTES, smooth muscle cells, and bone cells. Cell, Connective Tissue,Cells, Connective Tissue,Connective Tissue Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006829 Hydra A genus of freshwater polyps in the family Hydridae, order Hydroida, class HYDROZOA. They are of special interest because of their complex organization and because their adult organization corresponds roughly to the gastrula of higher animals. Hydras
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Sugiyama, and T Fujisawa
January 2012, The International journal of developmental biology,
T Sugiyama, and T Fujisawa
December 1985, Journal of embryology and experimental morphology,
T Sugiyama, and T Fujisawa
January 2019, Results and problems in cell differentiation,
T Sugiyama, and T Fujisawa
November 1971, Nature,
Copied contents to your clipboard!