Hyperglycemia per se (insulin and glucagon withdrawn) can inhibit hepatic glucose production in man. 1979

J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz

We examined the effect of hyperglycemia per se on net splanchnic glucose balance. In 2 groups of normal postabsorptive men who had undergone hepatic vein catheterization, somatostatin was administered to block endogenous insulin and glucagon secretion. Exogenous glucose was infused in both groups to maintain euglycemia for 2 h in one group (n = 7) and to induce hyperglycemia of 220-240 mg/dl after 30 minutes of euglycemia in the second group (n = 4). In both groups the induction of insulinopenia and glucagonopenia with euglycemia maintained resulted in an initial 75% fall in net splanchnic glucose production (NSGP). In the group in which euglycemia was maintained NSGP returned to basal rates (157 +/- 31 mg/min) within 2 h. However, in the group in which hyperglycemia was induced, NSGP did not return to basal rates but remained suppressed (28 +/- 4 mg/min) for the duration of the study. These data in normal man indicate that hyperglycemia per se with insulin and glucagon acutely withdrawn can suppress splanchnic glucose production but does not induce net splanchnic glucose storage.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006943 Hyperglycemia Abnormally high BLOOD GLUCOSE level. Postprandial Hyperglycemia,Hyperglycemia, Postprandial,Hyperglycemias,Hyperglycemias, Postprandial,Postprandial Hyperglycemias
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
January 1990, European journal of applied physiology and occupational physiology,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
November 1997, Diabetologia,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
February 1982, The American journal of physiology,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
August 1986, The Journal of clinical endocrinology and metabolism,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
August 1994, Metabolism: clinical and experimental,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
January 1993, Metabolism: clinical and experimental,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
March 1977, The Journal of clinical endocrinology and metabolism,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
March 2002, Diabetes,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
January 1987, Diabetes/metabolism reviews,
J E Liljenquist, and G L Mueller, and A D Cherrington, and J M Perry, and D Rabinowitz
March 1982, Metabolism: clinical and experimental,
Copied contents to your clipboard!