Cellular studies of peripheral neurons in siphon skin of Aplysia californica. 1979

C H Bailey, and V F Castellucci, and J Koester, and E R Kandel

1. To account for the similarity in the kinetics of habituation between the central and peripheral components of siphon withdrawal, we have tested the idea (52) that each centrally located mechanoreceptor sensory neuron sends two branches to siphon motor neurons; one to centrally located siphon motor neurons and a collateral branch that remains in the periphery and innervates the peripheral siphon motor neurons. 2. We have found a group of peripheral siphon motor neurons and tested the connection onto these cells by central mechanoreceptors. In addition, we have defined by various electrophysiological and morphological criteria two general classes of peripheral neurons that lie along the course of the siphon nerve. 3. One class (type I) consists of only a single cell in each animal. This peripheral neuron typically has the largest cell body found lying along the siphon nerve and is the only peripheral nerve cell that appears white when viewed under epi-illumination. The type I neuron often has a highly regular firing pattern, which occurs in the absence of spontaneous synaptic input. The three-dimensional morphology of this neuron suggests a paucity of fine processes, most of which do not arborize and may terminate in the connective tissue sheath. Fine structural observations of the peripheral white cell have revealed the presence of large densecore granules. The peripheral type I neuron is similar in most of its electrophysiological and morphological properties to central neurons postulated to be neurosecretory. The peripheral white cell is, at present, the only peripheral neuron we can identify with certainty as a unique individual. 4. The second class (type II) of peripheral neurons are siphon motor neurons for the peripheral component of the siphon-withdrawal reflex. In contrast to the type I neurons, members of the second class of peripheral neurons possess smaller, more spherical cell bodies that have varying amounts of orange pigmentation and which give rise to a relatively well-developed and arborized dendritic tree. Type II neurons feature an irregular spontaneous firing pattern that is occasionally modulated by a rich spontaneous synaptic input. Peripheral siphon motor neurons have restricted motor fields that produce contraction of the mantle floor and the base of the siphon. Most of the type II neurons were found to be electrically coupled to one another. 5. The peripheral siphon motor neurons resemble the central siphon motor neurons in that they receive a collateral synapse from centrally located mechanoreceptor sensory neurons. This peripheral sensory-to-motor synapse exhibits the same kinetics of decrement as its central counterpart, both of which parallel behavioral habituation. 6. The rich mechanoreceptor input onto the relatively isolated dendritic trees of the peripheral siphon motor neurons provide a uniquely restricted neuropil to study the sensory-to-motor synapse. The peripheral motor neurons may, therefore, be a useful simple preparation for the cellular study of behavioral plasticity.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009424 Nervous System Physiological Phenomena Characteristic properties and processes of the NERVOUS SYSTEM as a whole or with reference to the peripheral or the CENTRAL NERVOUS SYSTEM. Nervous System Physiologic Processes,Nervous System Physiological Processes,Nervous System Physiology,Nervous System Physiological Concepts,Nervous System Physiological Phenomenon,Nervous System Physiological Process,Physiology, Nervous System,System Physiology, Nervous
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D006185 Habituation, Psychophysiologic The disappearance of responsiveness to a repeated stimulation. It does not include drug habituation. Habituation (Psychophysiology),Habituation, Psychophysiological,Psychophysiologic Habituation,Psychophysiological Habituation,Habituations (Psychophysiology)
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
March 1979, Journal of neurophysiology,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
November 2015, The Journal of comparative neurology,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
September 1997, The Journal of comparative neurology,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
September 1970, Journal of neurochemistry,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
July 1983, Canadian journal of physiology and pharmacology,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
August 1987, Molecular and cellular biology,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
July 1995, Journal of neurophysiology,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
September 1974, Journal of neurophysiology,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
July 1989, Journal of neurobiology,
C H Bailey, and V F Castellucci, and J Koester, and E R Kandel
January 1988, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
Copied contents to your clipboard!