Fertilizing capacity and ultrastructure of fowl and turkey spermatozoa before and after freezing. 1979

M R Bakst, and T J Sexton

The fertilizing capacity, motility and ultrastructure of fowl and turkey spermatozoa were examined at various stages of the freezing process. For both species, fertility and motility were depressed after equilibration with dimethyl-sulphoxide at 5 degrees C. After freezing, motility was maintained at 55% for fowl spermatozoa and 40% for turkey spermatozoa; however, fertility was 55% for the fowl and 0% for the turkey. Qualitatively, the damage to the spermatozoa of both species was nearly identical, as revealed by scanning and transmission electron microscopy. The plasmalemma was the primary site of damage. 'Bent' spermatozoa, coiled tails and swollen mitochondria were also present. Damage to the acrosome was only observed in spermatozoa which had been frozen to -180 degrees or -196 degrees C. These changes were attributed to adverse osmotic conditions. Binding of cationic ferritin to the plasmalemma of spermatozoa from both species remained unaltered.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012662 Semen Preservation The process by which semen is kept viable outside of the organism from which it was derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism). Frozen Semen,Sperm Preservation,Preservation, Semen,Preservation, Sperm,Semen, Frozen
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D014422 Turkeys Large woodland game BIRDS in the subfamily Meleagridinae, family Phasianidae, order GALLIFORMES. Formerly they were considered a distinct family, Melegrididae. Meleagridinae,Meleagrididae

Related Publications

M R Bakst, and T J Sexton
September 1980, Journal of reproduction and fertility,
M R Bakst, and T J Sexton
January 1973, Journal of reproduction and fertility,
M R Bakst, and T J Sexton
January 1953, Transactions of the Pacific Coast Obstetrical and Gynecological Society,
M R Bakst, and T J Sexton
June 1953, Western journal of surgery, obstetrics, and gynecology,
M R Bakst, and T J Sexton
April 1970, Journal of reproduction and fertility,
M R Bakst, and T J Sexton
November 1982, Journal of reproduction and fertility,
Copied contents to your clipboard!