Enzymic degradation of keratosulphates. 1970

M Nishida-Fukuda, and F Egami

1. A multienzyme system capable of degrading keratosulphates to yield galactose, N-acetylglucosamine and sulphate was found in the liver extract of a marine gastropod, Charonia lampas. 2. During the degradation, neither oligosaccharides nor sulphated sugars were produced. 3. It is suggested that the degradation could be attributed to the concerted action of beta-galactosidase, beta-N-acetylglucosaminidase and a sulphatase (sulphohydrolase), tentatively designated keratosulphatase. 4. Two forms of keratosulphatase (I and II) were separated by DEAE-Sephadex column chromatography. Both forms could release all the sulphate from keratosulphates and neither appeared to be identical with glycosulphatase or chondrosulphatase, both of which are also present in Charonia lampas. 5. beta-Galactosidase and beta-N-acetylglucosaminidase could degrade keratopolysulphate to a greater extent in the presence of keratosulphatase than in its absence. 6. It is suggested that keratosulphate was first desulphated by the action of keratosulphatase, and the desulphated polymer was then degraded to galactose and N-acetylglucosamine by the action of beta-galactosidase and beta-N-acetylglucosaminidase. 7. beta-Galactosidase alone released a small amount of galactose from shark cartilage keratopolysulphate, but beta-N-acetylglucosaminidase alone did not release N-acetylglucosamine. This indicates that unsulphated galactose residues occupy all the non-reducing terminal positions in keratopolysulphate chains.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D005696 Galactosidases A family of galactoside hydrolases that hydrolyze compounds with an O-galactosyl linkage. EC 3.2.1.-. Galactosidase
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside

Related Publications

M Nishida-Fukuda, and F Egami
January 1980, Advances in experimental medicine and biology,
M Nishida-Fukuda, and F Egami
April 1992, The International journal of biochemistry,
M Nishida-Fukuda, and F Egami
June 1956, Biochimica et biophysica acta,
M Nishida-Fukuda, and F Egami
January 1957, Biochemische Zeitschrift,
M Nishida-Fukuda, and F Egami
January 1976, International review of connective tissue research,
M Nishida-Fukuda, and F Egami
March 1963, Life sciences (1962),
M Nishida-Fukuda, and F Egami
February 1963, Biochimica et biophysica acta,
M Nishida-Fukuda, and F Egami
January 1949, The Biochemical journal,
M Nishida-Fukuda, and F Egami
May 1962, Biochimica et biophysica acta,
M Nishida-Fukuda, and F Egami
March 1964, Biochimica et biophysica acta,
Copied contents to your clipboard!