Effect of thiourea on microsomal oxidation of alcohols and associated microsomal functions. 1979

A I Cederbaum, and E Dicker, and E Rubin, and G Cohen

Thiourea and diethylthiourea, two compounds which react with hydroxyl radicals, inhibited NADPH-dependent microsomal oxidation of ethanol and 1-butanol. Inhibition by both compounds was more effective in the presence of the catalase inhibitor, azide. Inhibition by thiourea was noncompetitive with respect to ethanol in the absence of azide but was competitive in the presence of azide. Urea, a compound which does not react with hydroxyl radicals or H2O2, was without effect. Thiourea had no effect on NADH- and NADH-cytochrome c reductase, NADPH oxidase, and NADH- and NADPH-dependent oxygen uptake. Thiourea inhibited the activities of aniline hydroxylase and aminopyrine demethylase. Thiourea, but no other hydroxyl radical scavengers, e.g., dimethyl sulfoxide, mannitol, and benzoate, reacted directly with H202 and decreased H2O2 accumulation in the presence of azide. Therefore the actions of thiourea are complex because it can react with both hydroxyl radicals and H2O2. Differences between the actions of thiourea and those previously reported for dimethyl sulfoxide, mannitol, and benzoate, e.g., effects on drug metabolism, effectiveness of inhibition in the absence of azide, or kinetics of the inhibition, probably reflect the fact that thiourea reacts directly with H2O2 whereas the other agents do not. The current results remain consistent with the concept that microsomal oxidation of alcohols involves interactions of the alcohols with hydroxyl radicals generated from microsomal electron transfer.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000440 Butanols Isomeric forms and derivatives of butanol (C4H9OH). Alcohols, Butyl,Butanol,Butylhydroxides,Hydroxybutanes,Butyl Alcohols
D000633 Aminopyrine N-Demethylase Aminopyrine N Demethylase,Demethylase, Aminopyrine N,N Demethylase, Aminopyrine,N-Demethylase, Aminopyrine
D000815 Aniline Hydroxylase A drug-metabolizing, cytochrome P-450 enzyme which catalyzes the hydroxylation of aniline to hydroxyaniline in the presence of reduced flavoprotein and molecular oxygen. EC 1.14.14.-. Hydroxylase, Aniline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide

Related Publications

A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
February 2012, The Journal of organic chemistry,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
February 1980, Archives of biochemistry and biophysics,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
April 1987, Gigiena i sanitariia,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
October 2020, The Journal of organic chemistry,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
January 1985, Alcoholism, clinical and experimental research,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
April 1996, Doklady Akademii nauk,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
January 1970, Biochemical pharmacology,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
January 1997, The Journal of veterinary medical science,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
January 1959, Biochemische Zeitschrift,
A I Cederbaum, and E Dicker, and E Rubin, and G Cohen
September 1974, Xenobiotica; the fate of foreign compounds in biological systems,
Copied contents to your clipboard!