Accessibility of the ribosomal genes to micrococcal nuclease in Physarum polycephalum. 1979

J Stalder, and T Seebeck, and R Braun

In Physarum polycephalum most genes coding for ribosomal RNA are not integrated in chromosomes, but are located in many copies in the nucleolus as plasmid-like palindromic DNA molecules. To find out whether coding sequences of rDNA are organized in a chromatin-like structure similar to that of bulk chromatin, nuclei were treated with micrococcal nuclease and DNA fragments were isolated. From bulk chromatin multimers of a basic unit of 170-180 base pairs were obtained. Nuclease fragmented DNA hybridized with labelled 19-S + 26-S rRNA was found to give the same saturation value as did unfragmented control DNA. No preferential degradation of ribosomal genes to acid soluble products was observed. A more detailed analysis of the nuclease degradation products was carried out with fragments separated by preparative gel electrophoresis. DNA eluted from the gels was hybridized in solution with labelled 19-S + 26-S rRNA. The coding sequences of rRNA were found to be degraded to approximately nucleosome size slightly more quickly than was the DNA of bulk chromatin. However, the distribution of the rDNA fragments on the gels did not coincide with the distribution of the fragments derived from bulk chromatin nucleosomes and their oligomers. The amount of rDNA in the interband regions was about intermediate between that found in the two adjacent bands. These results lead to the conclusion that the ribosomal genes, most of which are presumably active during rapid growth, are protected by proteins, probably histones. However, the ribosomal genes are present in a structure differing in some way from that of bulk chromatin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009695 Nucleic Acid Renaturation The reformation of all, or part of, the native conformation of a nucleic acid molecule after the molecule has undergone denaturation. Acid Renaturation, Nucleic,Acid Renaturations, Nucleic,Nucleic Acid Renaturations,Renaturation, Nucleic Acid,Renaturations, Nucleic Acid
D010804 Physarum A genus of protozoa, formerly also considered a fungus. Characteristics include the presence of violet to brown spores. Physarums
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

J Stalder, and T Seebeck, and R Braun
March 1982, Molecular and cellular biology,
J Stalder, and T Seebeck, and R Braun
September 1976, European journal of biochemistry,
J Stalder, and T Seebeck, and R Braun
February 1979, Biochemical and biophysical research communications,
J Stalder, and T Seebeck, and R Braun
February 1984, Nucleic acids research,
J Stalder, and T Seebeck, and R Braun
September 1976, Journal of molecular biology,
J Stalder, and T Seebeck, and R Braun
June 1978, Biochimica et biophysica acta,
J Stalder, and T Seebeck, and R Braun
November 1977, European journal of biochemistry,
J Stalder, and T Seebeck, and R Braun
December 1979, Biochimica et biophysica acta,
J Stalder, and T Seebeck, and R Braun
May 1978, European journal of biochemistry,
J Stalder, and T Seebeck, and R Braun
June 1980, Nucleic acids research,
Copied contents to your clipboard!