A structural basis for four distinct elution profiles on concanavalin A--Sepharose affinity chromatography of glycopeptides. 1979

S Narasimhan, and J R Wilson, and E Martin, and H Schachter

Twelve 14C-acetylated glycopeptides have been subjected to affinity chromatography on concanvalin A (Con A)--Sepharose at pH 7.5. The elution profiles could be classified into four distinct patterns. The first pattern showed no retardation of glycopeptide on the column and was elicited with a glycopeptide having three peripheral oligosaccharide chains: (abstract:see text). Such glycopeptides have only a single mannose residue capable of interacting with Con A--Sepharose; an interacting mannose residue is either an alpha-linked nonreducing terminal residue or an alpha-linked 2-O-substituted residue. The second type of profile showed a retarded elution of glycopeptide with buffer lacking methyl alpha-D-glucopyranoside (indicative of weak interaction with the column) and was given by glycopeptides with the structures: (abstract: see text) where R1 is either H or a sialyl residue. The third profile type showed tight binding of glycopeptide to Con A--Sepharose and elution as a sharp peak with 0.1 M methyl alpha-D-glucopyranoside; glycopeptides giving this pattern had the structures: (abstract: see text) where R2 is either H, glcNAc, Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc. These glycopeptides all have two interacting mannose residues, the mimimum required for binding to the column; one of these mannose residues must, however, be a terminal residue to obtain tight binding and sharp elution. The fourth profile type showed tight binding of glycopeptide to the column but elution with 0.1 M methyl alpha-D-glucopyranoside resulted in a broad peak indicating very tight binding; glycopeptides showing this behaviour had the structures: (abstract: see text) where R3 is either GlcNAc,Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc. Therefore it can be concluded that although a minimum of two interacting mannose residues is required for binding to Con A--Sepharose, the residues linked to these mannoses can either strengthen or weaken binding to the column.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009101 Multiple Myeloma A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY. Myeloma, Plasma-Cell,Kahler Disease,Myeloma, Multiple,Myeloma-Multiple,Myelomatosis,Plasma Cell Myeloma,Cell Myeloma, Plasma,Cell Myelomas, Plasma,Disease, Kahler,Multiple Myelomas,Myeloma Multiple,Myeloma, Plasma Cell,Myeloma-Multiples,Myelomas, Multiple,Myelomas, Plasma Cell,Myelomas, Plasma-Cell,Myelomatoses,Plasma Cell Myelomas,Plasma-Cell Myeloma,Plasma-Cell Myelomas
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D006020 Glycopeptides Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight. Glycopeptide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012685 Sepharose Agarose,Sepharose 4B,Sepharose C1 4B,4B, Sepharose C1,C1 4B, Sepharose

Related Publications

S Narasimhan, and J R Wilson, and E Martin, and H Schachter
October 1975, Journal of biochemistry,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
May 1976, Analytical biochemistry,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
November 1984, Clinical chemistry,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
November 1976, FEBS letters,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
November 1981, Annals of clinical biochemistry,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
January 1980, Preparative biochemistry,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
October 1982, Journal of immunological methods,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
June 1973, The Journal of general virology,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
October 1988, Thrombosis and haemostasis,
S Narasimhan, and J R Wilson, and E Martin, and H Schachter
May 1979, Journal of chromatography,
Copied contents to your clipboard!