Adaptation of the discharge of frog muscle spindles following a stretch. 1974

G Brokensha, and D R Westbury

1. Stretching a frog muscle spindle evoked a discharge of action potentials in its sensory axon. As the rate of this discharge decreased during the adaptation that followed the dynamic phase of a stretch, the variability of the interspike intervals of the impulse train increased.2. Adaptation occurred in two phases. At first the impulse train was almost regular and adapted rapidly, but later this gave way to a phase of slower adaptation where the variability of the discharge was much increased. In the second phase of adaptation the interspike intervals increased in length less than half as quickly as in the first phase.3. When the rate of adaptation changed from the more rapid to the slower phase there was often an abrupt change in the character of the discharge and the relationship between the mean interspike interval and the variability changed. The interspike interval at which this change-over occurred was relatively constant in records of the discharge from one afferent fibre even though stretches of different amplitude were employed, though it differed from one afferent fibre to another.4. These features of the discharge during adaptation suggest that the two sections of the impulse trains were derived from different spike generators by a process of probabilistic mixing.

UI MeSH Term Description Entries
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014732 Vibration A continuing periodic change in displacement with respect to a fixed reference. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Vibrations
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

G Brokensha, and D R Westbury
July 1976, Experimental neurology,
G Brokensha, and D R Westbury
July 1993, Journal of neurophysiology,
G Brokensha, and D R Westbury
November 1963, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
G Brokensha, and D R Westbury
June 1988, The Journal of physiology,
G Brokensha, and D R Westbury
January 1962, Journal of anatomy,
G Brokensha, and D R Westbury
April 1987, Journal of neurocytology,
G Brokensha, and D R Westbury
January 1968, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
G Brokensha, and D R Westbury
January 1968, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
G Brokensha, and D R Westbury
June 1959, Acta physiologica Scandinavica,
G Brokensha, and D R Westbury
September 2017, PLoS computational biology,
Copied contents to your clipboard!