Length heterogeneity of amplified circular rDNA molecules in oocytes of the house cricket Acheta domesticus (Orthoptera: Gryllidae). 1979

M D Cave

Amplification of the genes coding for rRNA occurs in the oocytes of a wide variety of organisms. The amplification process appears to be mediated through a rolling-circle mechanism. The approximate molecular weight of the smallest rDNA circles is equivalent to the estimated combined molecular weight of DNA which codes for a single ribosomal RNA precursor molecule and an associated non-transcribed spacer DNA sequence. RNA-DNA hybridization studies carried out on oocytes of the house cricket, Acheta domesticus, suggest that DNA coding for rRNA accounts for only a small fraction of the rDNA satellite, all of which is amplified in the oocyte. In order to test the possibility that the remainder of the amplified rDNA represents spacer and to determine whether a rolling-circle mechanism might also be involved in amplification in A. domesticus oocytes, rDNA was isolated from ovaries of A. domesticus and spread for electron microscopy. A large proportion of the rDNA isolated from ovaries is circular, while main-band DNA and rDNA prepared from other tissues demonstrates few if any circles. The mean size of the smallest rDNA circles is approximately 8 times longer than the length estimated for DNA which codes for 18S and 28 S rRNA. Denaturation mapping shows the rDNA circles to contain two major readily denaturing regions located about equidistant from one another on the circle. Each readily denaturing region accounts for 4--6% of the total DNA in the circle. The fact that only 12% of the average molecule is required to code for A. domesticus 18S and 28S rRNA is consistent with the hybridization data. Considerable size heterogeneity exists in the length of the smallest class of rDNA molecules. In the rDNA of other species such heterogeneity has been shown to reside in the non-transcribed spacer.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D009987 Orthoptera An order of insects comprising two suborders: Caelifera and Ensifera. They consist of GRASSHOPPERS, locusts, and crickets (GRYLLIDAE). Caelifera,Ensifera,Caeliferas,Ensiferas,Orthopteras
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M D Cave
June 1971, Wilhelm Roux' Archiv fur Entwicklungsmechanik der Organismen,
M D Cave
January 1967, Annales medicinae experimentalis et biologiae Fenniae,
Copied contents to your clipboard!