Virus: mixed infection with herpes simplex and simian virus 40. 1966

A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky

Mixed infection, the infection of a single cell by two distinguishable viruses, has been demonstrated by electron microscopy in cultures of African green monkey kidney cells after inoculation with simian virus 40 and herpes simplex. Mixed infection occurs rarely when the two viruses are inoculated simultaneously, but if herpes is inoculated 24 hours after SV40 both viruses are found in the same nucleus in about 5 percent of intact cells.

UI MeSH Term Description Entries
D007181 Inclusion Bodies, Viral An area showing altered staining behavior in the nucleus or cytoplasm of a virus-infected cell. Some inclusion bodies represent "virus factories" in which viral nucleic acid or protein is being synthesized; others are merely artifacts of fixation and staining. One example, Negri bodies, are found in the cytoplasm or processes of nerve cells in animals that have died from rabies. Negri Bodies,Viral Inclusion Bodies,Negri Body,Bodies, Negri,Bodies, Viral Inclusion,Body, Negri,Body, Viral Inclusion,Inclusion Body, Viral,Viral Inclusion Body
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D014776 Virus Cultivation Process of growing viruses in live animals, plants, or cultured cells. Viral Cultivation,Cultivation, Viral,Cultivation, Virus,Cultivations, Viral,Cultivations, Virus,Viral Cultivations,Virus Cultivations
D018139 Simplexvirus A genus of the family HERPESVIRIDAE, subfamily ALPHAHERPESVIRINAE, consisting of herpes simplex-like viruses. The type species is HERPESVIRUS 1, HUMAN. Herpes Simplex Virus,Herpesvirus 1, Saimiriine,Herpesvirus 1, Saimirine,Herpesvirus 16, Cercopithecine,Marmoset Virus,Cercopithecine Herpesvirus 16,Herpes Labialis Virus,Herpes-T Virus,Herpesvirus 1 (alpha), Saimirine,Herpesvirus Hominis,Herpesvirus Papio 2,Herpesvirus Platyrhinae,Marmoset Herpesvirus,Saimiriine Herpesvirus 1,Herpes Labialis Viruses,Herpes Simplex Viruses,Herpes T Virus,Herpes-T Viruses,Herpesvirus Homini,Herpesvirus, Marmoset,Herpesviruses, Marmoset,Homini, Herpesvirus,Hominis, Herpesvirus,Labialis Virus, Herpes,Labialis Viruses, Herpes,Marmoset Herpesviruses,Marmoset Viruses,Platyrhinae, Herpesvirus,Saimirine Herpesvirus 1,Simplexviruses,Virus, Herpes Labialis,Viruses, Herpes Labialis
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
March 1996, Virology,
A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
October 2000, Virology,
A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
June 1989, The Journal of general virology,
A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
January 1968, Annales medicinae experimentalis et biologiae Fenniae,
A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
May 1987, Journal of virology,
A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
March 1980, Mutation research,
A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
January 1987, Schweizer Monatsschrift fur Zahnmedizin = Revue mensuelle suisse d'odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia,
A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
September 1955, GP,
A S Rabson, and G T O'Conor, and F J Paul, and I K Berezesky
January 1990, Journal of virology,
Copied contents to your clipboard!