Inapparent viral infection of cells in vitro. 3. Manifestations of infection of L mouse cells by Japanese encephalitis virus. 1966

D R Dubbs, and W F Scherer

Dubbs, D. R. (University of Minnesota, Minneapolis), and W. F. Scherer. Inapparent viral infection of cells in vitro. III. Manifestations of infection of L mouse cells by Japanese encephalitis virus. J. Bacteriol. 91:2349-2355. 1966.-Nine strains of Japanese encephalitis (JE) virus were propagated serially in cultures of L cells reaching titers of 10(3.5) to 10(6.3). Although cytopathic effects were not seen in cultures of contiguous L cells after infection with JE virus, cell growth was inhibited. Moreover, cell destruction was readily apparent in infected cultures of sparse, noncontiguous L cells. Differences in the size of cell population of infected and noninfected cultures (i) occurred despite only 0.2 to 3.5% of the cells in infected cultures being associated with infectious virus, (ii) were greater in actively growing cultures than in those kept in maintenance media, and (iii) were probably in part related to an interferon produced in infected cultures.

UI MeSH Term Description Entries
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D003588 Cytopathogenic Effect, Viral Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses. Cytopathic Effect, Viral,Viral Cytopathogenic Effect,Cytopathic Effects, Viral,Cytopathogenic Effects, Viral,Effect, Viral Cytopathic,Effect, Viral Cytopathogenic,Effects, Viral Cytopathic,Effects, Viral Cytopathogenic,Viral Cytopathic Effect,Viral Cytopathic Effects,Viral Cytopathogenic Effects
D004668 Encephalitis Viruses A collection of single-stranded RNA viruses scattered across the Bunyaviridae, Flaviviridae, and Togaviridae families whose common property is the ability to induce encephalitic conditions in infected hosts. Encephalitis Virus,Virus, Encephalitis,Viruses, Encephalitis
D004672 Encephalitis, Japanese A mosquito-borne encephalitis caused by the Japanese B encephalitis virus (ENCEPHALITIS VIRUS, JAPANESE) occurring throughout Eastern Asia and Australia. The majority of infections occur in children and are subclinical or have features limited to transient fever and gastrointestinal symptoms. Inflammation of the brain, spinal cord, and meninges may occur and lead to transient or permanent neurologic deficits (including a POLIOMYELITIS-like presentation); SEIZURES; COMA; and death. (From Adams et al., Principles of Neurology, 6th ed, p751; Lancet 1998 Apr 11;351(9109):1094-7) Encephalitis, Japanese B,Japanese Encephalitis,Japanese B Encephalitis,Japanese B Viral Encephalitis,Viral Encephalitis, Japanese B
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D R Dubbs, and W F Scherer
January 1981, Indian journal of public health,
D R Dubbs, and W F Scherer
January 1956, The Journal of infectious diseases,
D R Dubbs, and W F Scherer
April 1949, American journal of veterinary research,
D R Dubbs, and W F Scherer
June 1947, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
D R Dubbs, and W F Scherer
August 2018, Pathogens (Basel, Switzerland),
D R Dubbs, and W F Scherer
December 1959, Journal of immunology (Baltimore, Md. : 1950),
D R Dubbs, and W F Scherer
January 1950, American journal of hygiene,
Copied contents to your clipboard!