Interlimb coordination during stepping in the cat: an electromyographic analysis. 1979

A W English

1. Simultaneous electromyographic (EMG) records were obtained from a single-joint extensor muscle of each of the four limbs of intact cats during repeated overground stepping trials. 2. In each limb, the temporal spacing of step cycles was determined by measurements of the intervals between consecutive terminations of EMG activity, since this occurs in a consistent relationship to the removal of the limb from the ground. By measuring the latencies between step cycles so determined, the temporal spacing of step cycles between limbs was determined. Each latency was expressed as a function of step duration or as a phase interval. 3. Analysis of the cooordination of step cycles of both homologous limb pairs (the forelimbs and hindlimbs), both homolateral limb pairs (the fore- and hindlimb on the right and left sides), and both sets of diagonal limbs suggest that the step cycles of the four limbs are coordinated according to a few frequently occurring patterns. However, the representation of a large number of phase intervals between these preferred patterns indicates a substantial amount of variability in interlimb coupling. 4. Analysis of the interaction of different interlimb-coupling patterns indicates that during alternate coordination of hindlimbs, coupling of the other limbs is fairly predictable. The step cycles of the forelimbs and hindlimbs are spaced according to a trotting form of coupling. During in-phase coordination of hindlimbs, the patterns of coordination of the other limbs are more diffuse. Forelimbs step cycles are coupled via a number of different modes, as are those of the forelimbs and hindlimbs. 5. It is concluded that the step cycles of different limbs are coordinated, but the association of observed patterns of coordination with any known neural pathways or the interaction of neural pathways should be approached with caution. The variability about the frequently occurring patterns is interpreted as an expression of the faculatative capabilities of the neural mechanisms controlling locomotion. Thus, these data favor a model of interlimb control during stepping, which recognizes preferred patterns of coordination and the variability about these patterns.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D009048 Motor Skills Performance of complex motor acts. Motor Skill,Skill, Motor,Skills, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A W English
April 1962, Experientia,
A W English
January 1990, Experimental brain research,
A W English
April 1973, The Journal of physiology,
A W English
September 1985, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
A W English
May 2006, The Journal of physiology,
A W English
March 1980, Acta physiologica Scandinavica,
A W English
March 2013, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine,
A W English
January 2011, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Copied contents to your clipboard!