The subcellular distribution of 32P-labelled phospholipids, 32P-labelled ribonucleic acid and 125I-labelled odoprotein in pig thyroid slices. Effect in vitro of thyrotrophic hormone and dibutyryl-3',5'-(cyclic)-adeosine onophosphate. 1969

P R Kerkof, and J R Tata

1. The incorporation in vitro of [(32)P]phosphate into phospholipids and RNA and of [(125)I]iodide into protein-bound iodine by pig thyroid slices incubated for up to 6hr. was studied. The subcellular distribution of the labelled products formed after incubation with radioactive precursor in the nuclear, mitochondrial, smooth-microsomal, rough-microsomal and cell-sap fractions was also studied. 2. Pig thyroid slices actively took up [(32)P]phosphate from the medium during 6hr. of incubation; the rate of incorporation of (32)P into phospholipids was two to five times that into RNA. 3. The uptake of [(125)I]iodide by the slices from the medium was rapid for 4hr. of incubation, 6-10% of the label being incorporated into iodoprotein. 4. Much of the (32)P-labelled phospholipid accumulated in mitochondria and microsomes, whereas the nuclear fraction contained most of the (32)P-labelled RNA. After 2hr. of incubation most of the (32)P-labelled cytoplasmic RNA accumulated in the rough-microsomal fraction. The major site of localization of proteinbound (125)I was the smooth-microsomal fraction, and gradually increasing amounts appeared in the soluble cytoplasm fraction, suggesting a vectorial discharge of [(125)I]iodoprotein (presumably thyroglobulin) from smooth vesicles into the colloid. 5. The addition of 0.1-0.4 unit of thyrotrophic hormone/ml. of incubation medium markedly enhanced the accumulation of (32)P-labelled phospholipids in the microsomal fractions and to a much smaller extent that of (32)P-labelled RNA without any increase in the total uptake of the label. Almost simultaneously the hormone increased the uptake of [(125)I]iodide by the slices and enhanced the accumulation of protein-bound (125)I in the smooth-microsomal fraction. 6. As a function of time of incubation, thyrotrophic hormone had a biphasic effect on [(125)I]iodide uptake and protein-bound (125)I formation, the stimulatory effect being reversed after 4hr. of incubation. 7. 6-N-2'-O-Dibutyryl-3',5'-(cyclic)-AMP, but not 3',5'-(cyclic)-AMP or 5'-AMP, mimicked the action of thyrotrophic hormone on iodine uptake as well as on iodination of protein. On the other hand, the mimicry by 6-N-2'-O-dibutyryl-3',5'-(cyclic)-AMP of the stimulatory effect of thyrotrophic hormone on the formation of labelled thyroid phospholipids and RNA was only an apparent one resulting from an enhanced uptake of [(32)P]phosphate. 8. It is concluded that thyrotrophic hormone causes a co-ordinated increase in the formation or accumulation of phospholipids, RNA and iodoprotein associated with the endoplasmic reticulum, and that 6-N-2'-O-dibutyryl-3',5'-(cyclic)-AMP mimics the more rapid effects of thyrotrophic hormone on transport and metabolic functions of thyroid cells, but does not influence their slower biosynthetic responses to the hormone.

UI MeSH Term Description Entries
D007455 Iodine A nonmetallic element of the halogen group that is represented by the atomic symbol I, atomic number 53, and atomic weight of 126.90. It is a nutritionally essential element, especially important in thyroid hormone synthesis. In solution, it has anti-infective properties and is used topically. Iodine-127,Iodine 127
D007456 Iodine Isotopes Stable iodine atoms that have the same atomic number as the element iodine, but differ in atomic weight. I-127 is the only naturally occurring stable iodine isotope. Isotopes, Iodine
D007467 Iodoproteins Iodopeptides
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate

Related Publications

P R Kerkof, and J R Tata
July 1973, The Journal of endocrinology,
P R Kerkof, and J R Tata
October 1966, Biochemical and biophysical research communications,
P R Kerkof, and J R Tata
August 1963, Sapporo igaku zasshi. The Sapporo medical journal,
P R Kerkof, and J R Tata
March 1984, Acta endocrinologica,
Copied contents to your clipboard!