Quantitative enzyme patterns in the nephron of the healthy human kidney. 1970

H Mattenheimer, and V E Pollak, and R C Muehrcke

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D007931 Leucyl Aminopeptidase A zinc containing enzyme of the hydrolase class that catalyzes the removal of the N-terminal amino acid from most L-peptides, particularly those with N-terminal leucine residues but not those with N-terminal lysine or arginine residues. This occurs in tissue cell cytosol, with high activity in the duodenum, liver, and kidney. The activity of this enzyme is commonly assayed using a leucine arylamide chromogenic substrate such as leucyl beta-naphthylamide. Cytosol Aminopeptidase,Leucine Aminopeptidase,L-Leucylnaphthylamidase,Methoxyleucine Aminopeptidase,Peptidase S,Zinc-Manganese-Leucine Aminopeptidase,Aminopeptidase, Cytosol,Aminopeptidase, Leucine,Aminopeptidase, Leucyl,Aminopeptidase, Methoxyleucine,Aminopeptidase, Zinc-Manganese-Leucine,Zinc Manganese Leucine Aminopeptidase
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002256 Carbonic Anhydrases A family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. They play an important role in the transport of CARBON DIOXIDE from the tissues to the LUNG. EC 4.2.1.1. Carbonate Dehydratase,Carbonic Anhydrase,Anhydrases, Carbonic,Dehydratase, Carbonate
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D005969 Glutamate Dehydrogenase An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2. Dehydrogenase, Glutamate

Related Publications

H Mattenheimer, and V E Pollak, and R C Muehrcke
January 1972, Ergebnisse der inneren Medizin und Kinderheilkunde,
H Mattenheimer, and V E Pollak, and R C Muehrcke
September 1983, The International journal of pediatric nephrology,
H Mattenheimer, and V E Pollak, and R C Muehrcke
April 2005, Vojnosanitetski pregled,
H Mattenheimer, and V E Pollak, and R C Muehrcke
May 1968, Zeitschrift fur klinische Chemie und klinische Biochemie,
H Mattenheimer, and V E Pollak, and R C Muehrcke
July 1965, Klinische Wochenschrift,
H Mattenheimer, and V E Pollak, and R C Muehrcke
January 1967, Pathologie et biologie,
H Mattenheimer, and V E Pollak, and R C Muehrcke
October 1965, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
H Mattenheimer, and V E Pollak, and R C Muehrcke
September 1967, Zeitschrift fur klinische Chemie und klinische Biochemie,
H Mattenheimer, and V E Pollak, and R C Muehrcke
January 1984, Basic and applied histochemistry,
H Mattenheimer, and V E Pollak, and R C Muehrcke
February 1961, The Journal of clinical investigation,
Copied contents to your clipboard!