Potassium balance and the control of renin secretion. 1970

J E Sealey, and I Clark, and M B Bull, and J H Laragh

Plasma renin activity and renin substrate were measured in nine groups of rats which were maintained for 7 wk on diets in which the proportions of sodium and potassium were varied. Balance data indicated that the highest dietary intake of potassium employed (92 mEq K(+)/100 g food) consistently induced sodium depletion. With less consistency, the highest sodium intake employed (52 mEq Na(+)/100 g food) tended to induce potassium depletion.In accordance with previous reports, sodium deprivation induced significant increases in plasma renin activity. But the present results indicated that changes in potassium intake exerted a highly significant modulating influence on this characteristic response. The results describe an inverse relationship between potassium administration and the concurrent level of plasma renin activity. The highest serum renin levels of all occurred in the potassium-depleted animals and the usual renin response to sodium deprivation was virtually abolished in the presence of a high potassium diet. Neither the suppressing effect of K(+) administration nor the stimulating effect of K(+) depletion on plasma renin activity could be explained in terms of any predicted changes in aldosterone secretion or observed changes in sodium balance. Therefore, the effect seems to be mediated by a direct influence of potassium ions on renal renin secretion, perhaps via induced changes in sodium load to the macula densa.These studies point to an important role for potassium in the regulation of renin secretion. The results in turn raise the possibility that renin secretion per se may be importantly involved in effecting potassium conservation and potassium elimination. The means by which these interactions are finally mediated remain to be clarified.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D009318 Natriuresis Sodium excretion by URINATION. Natriureses
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D006128 Growth Gradual increase in the number, the size, and the complexity of cells of an individual. Growth generally results in increase in ORGAN WEIGHT; BODY WEIGHT; and BODY HEIGHT.
D000450 Aldosterone A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. Aldosterone, (+-)-Isomer,Aldosterone, (11 beta,17 alpha)-Isomer
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine

Related Publications

J E Sealey, and I Clark, and M B Bull, and J H Laragh
January 1970, Nephron,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
July 1964, Circulation research,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
March 1977, Japanese circulation journal,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
December 1972, The Medical journal of Australia,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
February 1987, Endocrine reviews,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
October 1999, The American journal of physiology,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
September 1968, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
August 2012, American journal of hypertension,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
October 2000, Pflugers Archiv : European journal of physiology,
J E Sealey, and I Clark, and M B Bull, and J H Laragh
January 1989, Reviews of physiology, biochemistry and pharmacology,
Copied contents to your clipboard!