Electrophysiological studies of neuromuscular transmission in hereditary 'motor end-plate disease' of the mouse. 1971

L W Duchen, and E Stefani

1. Studies have been made on isolated nerve-muscle preparations from mice with hereditary ;motor end-plate disease'.2. Spontaneous fibrillation was observed in the isolated preparation.3. Muscles gave only a weak twitch or failed to contract in response to nerve stimulation. Direct stimulation of muscles caused a twitch response which had a slower time course than normal. Peripheral nerve conduction was normal.4. Intracellular recording from single muscle fibres showed that with longer survival of the animal an increasing proportion of fibres failed to show end-plate potentials or action potentials in response to nerve stimulation.5. Miniature end-plate potentials (m.e.p.p.s) were recorded in almost all muscle fibres including those in which neuromuscular transmission had failed. The frequency of m.e.p.p.s was greater than normal, was not increased by tetanic stimulation of the nerve but was increased by a raised external potassium concentration.6. Muscle fibres were supersensitive to acetylcholine.7. The results suggest that the muscular weakness in this disease is due to the failure of nerve action potentials to invade motor nerve terminals so that muscle fibres become ;functionally denervated'.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009468 Neuromuscular Diseases A general term encompassing lower MOTOR NEURON DISEASE; PERIPHERAL NERVOUS SYSTEM DISEASES; and certain MUSCULAR DISEASES. Manifestations include MUSCLE WEAKNESS; FASCICULATION; muscle ATROPHY; SPASM; MYOKYMIA; MUSCLE HYPERTONIA, myalgias, and MUSCLE HYPOTONIA. Amyotonia Congenita,Oppenheim Disease,Cramp-Fasciculation Syndrome,Fasciculation-Cramp Syndrome, Benign,Foley-Denny-Brown Syndrome,Oppenheim's Disease,Benign Fasciculation-Cramp Syndrome,Benign Fasciculation-Cramp Syndromes,Cramp Fasciculation Syndrome,Cramp-Fasciculation Syndromes,Fasciculation Cramp Syndrome, Benign,Fasciculation-Cramp Syndromes, Benign,Foley Denny Brown Syndrome,Neuromuscular Disease,Oppenheims Disease,Syndrome, Cramp-Fasciculation,Syndrome, Foley-Denny-Brown,Syndromes, Cramp-Fasciculation
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

L W Duchen, and E Stefani
April 1970, Journal of neurology, neurosurgery, and psychiatry,
L W Duchen, and E Stefani
December 1986, Journal of the neurological sciences,
L W Duchen, and E Stefani
October 1971, Journal of neurology, neurosurgery, and psychiatry,
L W Duchen, and E Stefani
January 1966, Annals of the New York Academy of Sciences,
L W Duchen, and E Stefani
October 1980, The Journal of physiology,
L W Duchen, and E Stefani
January 1985, Neuropathology and applied neurobiology,
L W Duchen, and E Stefani
February 1960, American journal of physical medicine,
L W Duchen, and E Stefani
January 1986, Neurologia i neurochirurgia polska,
L W Duchen, and E Stefani
April 1988, Bollettino della Societa italiana di biologia sperimentale,
L W Duchen, and E Stefani
January 1970, Toxicology and applied pharmacology,
Copied contents to your clipboard!