Transient-kinetic studies of pig muscle lactate dehydrogenase. 1971

R A Stinson, and H Gutfreund

1. The very fast pre-steady-state formation of NADH catalysed by pig M(4) lactate dehydrogenase was equivalent to the enzyme-site concentration at pH values greater than 8.0 and to one-half the site concentration at pH6.8. 2. The rate of dissociation of NADH from the enzyme at pH8.0 (450s(-1)) in the absence of other substrates is faster than the steady-state oxidation of lactate (80s(-1)). The latter process is therefore controlled by a step before NADH dissociation but subsequent to the hydride transfer. 3. The oxidation of enzyme-NADH by excess of pyruvate was studied as a first-order process at pH9.0. There was no effect of NADD on this reaction and it was concluded that the ternary complex undergoes a rate-limiting change before the hydride-transfer step. 4. Some conclusions about the reactions catalysed by the M(4) isoenzyme were drawn from a comparison of these results with those obtained with the H(4) isoenzyme and liver alcohol dehydrogenase.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone

Related Publications

R A Stinson, and H Gutfreund
May 1962, The Journal of biological chemistry,
R A Stinson, and H Gutfreund
January 1974, Molecular biology,
R A Stinson, and H Gutfreund
November 1977, European journal of biochemistry,
R A Stinson, and H Gutfreund
October 1970, The Biochemical journal,
R A Stinson, and H Gutfreund
February 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
R A Stinson, and H Gutfreund
March 1975, The Journal of biological chemistry,
R A Stinson, and H Gutfreund
January 1994, Methods in enzymology,
Copied contents to your clipboard!