In vitro chemotherapeutic combinations against isoniazid-resistant Mycobacterium tuberculosis and Mycobacterium fortuitum. 1971

E Goldstein, and M C Eagle, and M L LaCasse

It is an acceptable medical practice to use second-line antimycobacterial drugs in combination with isoniazid in treatment of isoniazid-resistant tuberculosis. Recent investigations have demonstrated the importance of determining chemotherapeutic interaction in instances of multiple antibiotic use. We studied the inhibitory effect of combinations of isoniazid with ethambutol, rifampin, ethionamide, cycloserine, viomycin, and kanamycin against three isoniazid-resistant strains of Mycobacterium tuberculosis and three strains of M. fortuitum. The isobologram technique with drug concentrations of 0.4 to 100 mug/ml was used. With the exception of single instances in which kanamycin plus isoniazid (M. tuberculosis strain 9999) and ethionamide plus isoniazid (M. fortuitum strain 2080) seemed to have a synergistic effect, neither synergy nor antagonism was noted for any of the combinations. These studies show that the combined use of isoniazid and a second line antimycobacterial agent results in vitro in indifferent inhibitory activity.

UI MeSH Term Description Entries
D007538 Isoniazid Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. Isonicotinic Acid Hydrazide,Ftivazide,Isonex,Isonicotinic Acid Vanillylidenehydrazide,Phthivazid,Phthivazide,Tubazide,Acid Vanillylidenehydrazide, Isonicotinic,Hydrazide, Isonicotinic Acid,Vanillylidenehydrazide, Isonicotinic Acid
D007612 Kanamycin Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components. Kanamycin A,Kanamycin Sulfate,Kantrex
D009161 Mycobacterium A genus of gram-positive, aerobic bacteria. Most species are free-living in soil and water, but the major habitat for some is the diseased tissue of warm-blooded hosts. Mycobacteria
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D003523 Cycloserine Antibiotic substance produced by Streptomyces garyphalus. R-4-Amino-3-isoxazolidinone,Seromycin
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004977 Ethambutol An antitubercular agent that inhibits the transfer of mycolic acids into the cell wall of the tubercle bacillus. It may also inhibit the synthesis of spermidine in mycobacteria. The action is usually bactericidal, and the drug can penetrate human cell membranes to exert its lethal effect. (From Smith and Reynard, Textbook of Pharmacology, 1992, p863) Dexambutol,EMB-Fatol,EMB-Hefa,Etambutol Llorente,Ethambutol Hydrochloride,Etibi,Miambutol,Myambutol,EMB Fatol,EMB Hefa,Hydrochloride, Ethambutol,Llorente, Etambutol
D005000 Ethionamide A second-line antitubercular agent that inhibits mycolic acid synthesis. Amidazine,Ethioniamide,Trecator,Trecator-SC,Trecator SC
D000995 Antitubercular Agents Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy. Anti-Tuberculosis Agent,Anti-Tuberculosis Agents,Anti-Tuberculosis Drug,Anti-Tuberculosis Drugs,Antitubercular Agent,Antitubercular Drug,Tuberculostatic Agent,Tuberculostatic Agents,Antitubercular Drugs,Agent, Anti-Tuberculosis,Agent, Antitubercular,Agent, Tuberculostatic,Anti Tuberculosis Agent,Anti Tuberculosis Agents,Anti Tuberculosis Drug,Anti Tuberculosis Drugs,Drug, Anti-Tuberculosis,Drug, Antitubercular

Related Publications

E Goldstein, and M C Eagle, and M L LaCasse
November 1962, The American review of respiratory disease,
E Goldstein, and M C Eagle, and M L LaCasse
February 1953, Journal of general microbiology,
E Goldstein, and M C Eagle, and M L LaCasse
September 1964, The American review of respiratory disease,
E Goldstein, and M C Eagle, and M L LaCasse
August 1998, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease,
E Goldstein, and M C Eagle, and M L LaCasse
May 1962, Diseases of the chest,
E Goldstein, and M C Eagle, and M L LaCasse
December 2020, Pharmaceuticals (Basel, Switzerland),
E Goldstein, and M C Eagle, and M L LaCasse
February 1957, Deutsche medizinische Wochenschrift (1946),
E Goldstein, and M C Eagle, and M L LaCasse
May 1953, Lancet (London, England),
E Goldstein, and M C Eagle, and M L LaCasse
July 2012, BMJ case reports,
E Goldstein, and M C Eagle, and M L LaCasse
August 1986, European journal of clinical microbiology,
Copied contents to your clipboard!