Germination of heat- and alkali-altered spores of Clostridium perfringens type A by lysozyme and an initiation protein. 1972

C L Duncan, and R G Labbe, and R R Reich

The normal system functioning in the utilization of metabolizable germinants by both heat-sensitive and heat-resistant spores of Clostridium perfringens was inactivated by heat or by treatment of the spores with alkali to remove a soluble coat protein layer. Altered spores were incapable of germination (less than 1%) and outgrowth (less than 0.0005%) in complex media without the addition of either lysozyme or an initiation protein produced by C. perfringens. The addition of either of these agents permitted, in the case of alkali-treated spores, both 90 to 95% germination and outgrowth, as measured by colony formation. In the case of heat-damaged spores, only 50% germination and 2% outgrowth resulted from addition of the initiation protein, whereas lysozyme permitted 85% germination and 8% outgrowth. Alteration of the spores by heat or alkali apparently inactivated the normal lytic system responsible for cortical degradation during germination. Kinetics of production of the initiation protein and conditions affecting both its activity and that of lysozyme on altered spores are described.

UI MeSH Term Description Entries
D008837 Micrococcus A genus of gram-positive, spherical bacteria found in soils and fresh water, and frequently on the skin of man and other animals.
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D003016 Clostridium perfringens The most common etiologic agent of GAS GANGRENE. It is differentiable into several distinct types based on the distribution of twelve different toxins. Clostridium welchii
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005612 Freeze Drying Method of tissue preparation in which the tissue specimen is frozen and then dehydrated at low temperature in a high vacuum. This method is also used for dehydrating pharmaceutical and food products. Lyophilization,Drying, Freeze,Dryings, Freeze,Freeze Dryings,Lyophilizations
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic

Related Publications

C L Duncan, and R G Labbe, and R R Reich
October 1973, Journal of bacteriology,
C L Duncan, and R G Labbe, and R R Reich
September 1978, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
C L Duncan, and R G Labbe, and R R Reich
November 1995, Letters in applied microbiology,
C L Duncan, and R G Labbe, and R R Reich
December 1971, Annales de l'Institut Pasteur,
C L Duncan, and R G Labbe, and R R Reich
September 1969, Annales de l'Institut Pasteur,
C L Duncan, and R G Labbe, and R R Reich
July 1983, Canadian journal of microbiology,
C L Duncan, and R G Labbe, and R R Reich
October 1974, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
C L Duncan, and R G Labbe, and R R Reich
November 1974, Japanese journal of microbiology,
C L Duncan, and R G Labbe, and R R Reich
March 1989, Journal of medical microbiology,
Copied contents to your clipboard!