Physical aggregation and functional reconstitution of solubilized membranes of Bacillus stearothermophilus. 1972

D F Kiszkiss, and R J Downey

Isolated membranes of Bacillus stearothermophilus 2184D can be disrupted by treatment with sodium dodecyl sulfate (SDS). This disruption is attended by a decreased turbidity of membrane suspensions and a differential loss of activities of the electron transport system. Reduced methyl viologen (MVH)-nitrate reductase activity is insensitive to SDS treatment, whereas reduced nicotinamide adenine dinucleotide (NADH)-nitrate reductase and cyanide-sensitive NADH oxidase activities are decreased by 80% at an SDS concentration of 0.5 mg/mg of membrane protein. NADH-menadione reductase activity is unaffected at this SDS concentration, but at higher detergent levels it also decreases in activity. The abilities of NADH to reduce and nitrate to oxidize the cytochrome components of the membrane were also decreased after SDS treatment. Dilution of solubilized membrane in buffer containing divalent cation results in formation of an aggregate with an increased turbidity and reconstituted NADH-nitrate reductase and cyanide-sensitive NADH oxidase activities. Of several cations tested, magnesium was the most effective, and the reconstitution process was pH-dependent with an optimum at pH 7.4. Intact and aggregated membranes had similar densities and cytochrome contents, and the sensitivity of NADH-nitrate reductase to several inhibitors was similar in intact and reconstituted membranes.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011830 Radiation Effects The effects of ionizing and nonionizing radiation upon living organisms, organs and tissues, and their constituents, and upon physiologic processes. It includes the effect of irradiation on food, drugs, and chemicals. Effects, Radiation,Effect, Radiation,Radiation Effect
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture

Related Publications

D F Kiszkiss, and R J Downey
January 1974, Methods in enzymology,
D F Kiszkiss, and R J Downey
January 2003, Toxicology in vitro : an international journal published in association with BIBRA,
D F Kiszkiss, and R J Downey
February 1969, Journal of bacteriology,
D F Kiszkiss, and R J Downey
January 1976, The Journal of biological chemistry,
D F Kiszkiss, and R J Downey
January 1980, Biofizika,
Copied contents to your clipboard!