The development of gluconeogenesis in rat liver. Controlling factors in the newborn. 1971

F J Ballard

1. Measurements in livers of rats delivered by Caesarian section show a rapid change in the relative proportion of adenine nucleotides. By 20min the ATP/ADP ratio had increased from 1.76 to 8.7 and the value of the relationship [ATP][AMP]/[ADP](2) increased from 1.0 to 4.4. These changes are dependent on the availability of oxygen to the animal. 2. The free [NAD(+)]/[NADH] ratio in the liver cytosol increases from 180 after delivery to reach a maximum of 1010 at 2h, before falling to 540 in the 24h-old animal. 3. The mitochondrial NAD redox potential also shows a sharp increase towards a more oxidized state in livers of delivered rats. 4. These results probably indicate that the foetal liver is hypoxic, with oxygenation occurring in the first hour after delivery. 5. Measurements in livers of naturally born rats 2min after birth also suggest that this tissue is hypoxic with an ATP/ADP ratio of 1.83 and a free [NAD(+)]/[NADH] ratio of 117. 6. Concentrations of intermediates in the gluconeogenic pathway have been determined in livers of foetal, 1h-old and 1-day-old rats. These experiments imply a facilitation of lactate dehydrogenase and glucose 6-phosphatase activities by 1h after birth, and a stimulation of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase steps by 1 day after birth. 7. The appearance of gluconeogenesis in livers of newborn rats seems therefore to involve an oxygenation stage followed by an increase in phosphoenolpyruvate carboxykinase activity.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010071 Oxaloacetates Derivatives of OXALOACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include a 2-keto-1,4-carboxy aliphatic structure. Ketosuccinates,Oxosuccinates,Oxaloacetic Acids
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases

Related Publications

F J Ballard
August 1975, The American journal of physiology,
F J Ballard
March 1954, The Journal of physiology,
F J Ballard
November 1966, The Biochemical journal,
F J Ballard
February 1972, Canadian journal of biochemistry,
F J Ballard
January 1971, Metabolism: clinical and experimental,
Copied contents to your clipboard!