Effects of chloramphenicol isomers and erythromycin on enzyme and lipid synthesis induced by oxygen in wild-type and petite yeast. 1972

P A Gordon, and M J Lowdon, and P R Stewart

The synthesis of mitochondrial enzymes induced by exposure of anaerobically grown, lipid-depleted Saccharomyces cerevisiae to oxygen is inhibited by d(-)-threo-chloramphenicol and erythromycin. The concentration of these antibiotics required to cause 50% inhibition of this synthesis is less than 1 mm; this is also approximately the concentration required to inhibit by the same amount mitochondrial protein synthesis in situ. The synthesis of unsaturated fatty acids, ergosterol, and phospholipid induced by aeration is inhibited by d(-)-threo-chloramphenicol at high concentrations (12 mm) but is unaffected by erythromycin. l(+)-threo-Chloramphenicol affects neither enzyme nor lipid synthesis and is without effect on mitochondrial protein synthesis in situ. All three compounds inhibit the oxidative activity of isolated mitochondria; the chloramphenicol isomers also inhibit phosphorylation. In a euflavine-derived petite mutant, lacking mitochondrial protein synthesis and respiration, aeration results in the normal development of lipid in the cells, but no synthesis of mitochondrial enzymes. d(-)-threo-Chloramphenicol does not inhibit lipid synthesis in these cells. Thus inhibition of mitochondrial protein synthesis with erythromycin or genetic deletion of mitochondrial protein synthesis results in loss of the capacity to synthesize enzymes during aeration. d(-)-threo-Chloramphenicol, as well as inhibiting induced enzyme formation, inhibits lipid synthesis induced by oxygen. It is unlikely that the latter effect of chloramphenicol is due to inhibition of energy production and transformation, to direct effects on lipid synthesis, or to an inhibition of mitochondrial protein synthesis. It is, however, an effect not shared with the l isomer.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004917 Erythromycin A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erycette,Erymax,Erythromycin A,Erythromycin C,Erythromycin Lactate,Erythromycin Phosphate,Ilotycin,T-Stat,Lactate, Erythromycin,Phosphate, Erythromycin,T Stat,TStat

Related Publications

P A Gordon, and M J Lowdon, and P R Stewart
August 1982, Journal of bacteriology,
P A Gordon, and M J Lowdon, and P R Stewart
December 1983, The Journal of biological chemistry,
P A Gordon, and M J Lowdon, and P R Stewart
April 1969, Biochimica et biophysica acta,
P A Gordon, and M J Lowdon, and P R Stewart
January 1971, Molecular & general genetics : MGG,
P A Gordon, and M J Lowdon, and P R Stewart
August 1972, The Journal of biological chemistry,
P A Gordon, and M J Lowdon, and P R Stewart
February 2009, Antimicrobial agents and chemotherapy,
P A Gordon, and M J Lowdon, and P R Stewart
October 1971, Mutation research,
P A Gordon, and M J Lowdon, and P R Stewart
October 1969, Proceedings of the National Academy of Sciences of the United States of America,
P A Gordon, and M J Lowdon, and P R Stewart
November 1979, Journal of molecular biology,
Copied contents to your clipboard!