The corpus luteum of the guinea pig. IV. Fine structure of macrophages during pregnancy and postpartum luteolysis, and the phagocytosis of luteal cells. 1979

L G Paavola

Little information is available on the ultrastructure of macrophages in the corpus luteum or their importance in the regression of luteal tissue. In the present study, the fine structure of activated luteal macrophages during pregnancy and the postpartum period was examined by electron microscopy of guinea pig ovaries fixed by vascular perfusion. In these corpora lutea, macrophages can readily be distinguished from luteal cells. Activated macrophages typically display three prominent inclusions in their cytoplasm: (1) heterophagic vacuoles, (2) distinctive large dense inclusions, and (3) large and small electron-lucent vacuoles. In addition, they contain numerous smaller lysosome-like dense bodies. Activated macrophages in corpora lutea also characteristically show many surface protrusions, such as processes, folds or pseudopodia, which often occur in close contact with nearby luteal cells. Generally, nuclei of macrophages are irregular in shape and display a dense border of heterochromatin, thus differing from those of luteal cells. Macrophages seem to be most abundant in regressing corpora lutea, where they commonly display heterophagic vacuoles containing recognizable luteal cell fragments, evidence that these phagocytes ingest senescent luteal cells. The digestion of luteal cell components in heterophagic vacuoles presumably gives rise to the distinctive large dense inclusions typically seen in macrophages. The findings of this study indicate that macrophages play a central role in luteolysis by phagocytizing luteal cells or their remnants. They therefore appear to bring about the reduction in volume of the corpus luteum that occurs as this tissue regresses. These results taken together with those previously published (Paavola, '78) further indicate that breakdown of the corpus luteum during postpartum luteolysis in guinea pigs involves both autophagy and heterophagy.

UI MeSH Term Description Entries
D008184 Luteal Cells PROGESTERONE-producing cells in the CORPUS LUTEUM. The large luteal cells derive from the GRANULOSA CELLS. The small luteal cells derive from the THECA CELLS. Lutein Cells,Granulosa-Luteal Cells,Granulosa-Lutein Cells,Large Luteal Cells,Small Luteal Cells,Theca-Luteal cells,Theca-Lutein Cells,Cell, Granulosa-Luteal,Cell, Granulosa-Lutein,Cell, Large Luteal,Cell, Luteal,Cell, Lutein,Cell, Small Luteal,Cell, Theca-Lutein,Cells, Granulosa-Luteal,Cells, Granulosa-Lutein,Cells, Large Luteal,Cells, Luteal,Cells, Lutein,Cells, Small Luteal,Cells, Theca-Lutein,Granulosa Luteal Cells,Granulosa Lutein Cells,Granulosa-Luteal Cell,Granulosa-Lutein Cell,Large Luteal Cell,Luteal Cell,Luteal Cell, Large,Luteal Cell, Small,Luteal Cells, Large,Luteal Cells, Small,Lutein Cell,Small Luteal Cell,Theca Luteal cells,Theca Lutein Cells,Theca-Luteal cell,Theca-Lutein Cell,cell, Theca-Luteal,cells, Theca-Luteal
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011270 Pregnancy, Animal The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH. Animal Pregnancies,Animal Pregnancy,Pregnancies, Animal
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D003341 Luteolysis Degradation of CORPUS LUTEUM. In the absence of pregnancy and diminishing trophic hormones, the corpus luteum undergoes luteolysis which is characterized by the involution and cessation of its endocrine function. Corpus Luteum Regression,Luteal Regression,Regression, Corpus Luteum,Regression, Luteal
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms

Related Publications

L G Paavola
January 1971, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
L G Paavola
November 1976, Fertility and sterility,
L G Paavola
January 1973, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
L G Paavola
April 1973, American journal of obstetrics and gynecology,
Copied contents to your clipboard!