Role of the -adrenoceptor in regulating noradrenaline overflow by nerve stimulation. 1972

M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano

1. A study of the actions of phenoxybenzamine on transmitter overflow, neuronal and extraneuronal uptake of noradrenaline and in causing alpha-adrenoceptor blockade was carried out using the isolated cat nictitating membrane preparation.2. Phenoxybenzamine increased transmitter overflow elicited by nerve-stimulation at 10 Hz in a concentration dependent manner in the range 10(-8) to 10(-5) g/ml.3. Neuronal uptake of [(3)H]-noradrenaline was not inhibited by concentrations lower than 10(-6) g/ml of phenoxybenzamine. With 10(-7) g/ml of phenoxybenzamine a significant increase in transmitter overflow was obtained, although neuronal uptake of noradrenaline was not affected. Higher concentrations of phenoxybenzamine (10(-6) and 10(-5) g/ml) inhibited the neuronal uptake of noradrenaline and further increased transmitter overflow.4. Extraneuronal uptake of [(3)H]-noradrenaline was inhibited only with the highest concentration of phenoxybenzamine tested (10(-5) g/ml) and therefore appears to be unrelated to the effects on transmitter overflow.5. There was a significant correlation between the degree of alpha-adrenoceptor block produced by phenoxybenzamine and the increase in transmitter overflow obtained by nerve stimulation.6. These results indicate that phenoxybenzamine, in addition to increasing overflow by preventing reuptake of noradrenaline, may increase transmitter release.7. The possibility that phenoxybenzamine acts on alpha-adrenoceptors in the adrenergic nerve terminal is discussed. These receptors would be involved in a negative feedback mechanism regulating transmitter release.

UI MeSH Term Description Entries
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009541 Nictitating Membrane A fold of the mucous membrane of the CONJUNCTIVA in many animals. At rest, it is hidden in the medial canthus. It can extend to cover part or all of the cornea to help clean the CORNEA. Third Eyelid,Eyelid, Third,Eyelids, Third,Membrane, Nictitating,Membranes, Nictitating,Nictitating Membranes,Third Eyelids
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano
January 1973, Acta physiologica latino americana,
M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano
January 1985, Journal of cardiovascular pharmacology,
M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano
January 1975, British journal of pharmacology,
M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano
November 1984, Journal of the autonomic nervous system,
M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano
November 1978, Naunyn-Schmiedeberg's archives of pharmacology,
M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano
June 1994, Naunyn-Schmiedeberg's archives of pharmacology,
M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano
June 1966, Life sciences,
M A Enero, and S Z Langer, and R P Rothlin, and F J Stefano
January 1965, Life sciences (1962),
Copied contents to your clipboard!