A possible role for 5-phosphoribosyl 1-pyrophosphate in the stimulation of uterine purine nucleotide synthesis in response to oestradiol-17 . 1972

J M Oliver

1. It has been reported that the rate of purine nucleotide synthesis de novo in the immature rat uterus is doubled at 6h after administration of oestradiol-17beta. The present work confirms an increased incorporation of glycine and adenine into uterine nucleotides between 2 and 6h after hormone treatment and investigates the mechanism of this response. 2. Activation of regulatory enzymes is unlikely to promote increased nucleotide synthesis: the activities of 5-phosphoribosyl 1-pyrophosphate amidotransferase (EC 2.4.2.14) and adenine phosphoribosyltransferase (EC 2.4.2.7) are the same in uterine extracts from control and oestrogen-treated rats. 3. Therefore it was proposed that oestradiol might promote an increased supply of a rate-limiting substrate. The low oestrogen-sensitive rate of AMP synthesis from adenine and endogenous 5-phosphoribosyl 1-pyrophosphate in the intact uterus compared with the high, oestrogen-insensitive rate in uterine extracts supplemented with 5-phosphoribosyl 1-pyrophosphate is evidence that the supply of 5-phosphoribosyl 1-pyrophosphate limits purine nucleotide formation and may increase after hormone treatment. This proposal is supported by the decrease in AMP synthesis in the whole tissue in the presence of guanine and 7-amino-3-(beta-d-ribofuranosyl)pyrazolo[3,4-d]pyrimidine (formycin). These compounds do not inhibit adenine uptake or adenine phosphoribosyltransferase activity, but they both decrease the availability of 5-phosphoribosyl 1-pyrophosphate, the former by promoting its utilization by hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) and the latter by inhibiting its synthesis from ribose 5-phosphate and ATP by ribose 5-phosphate pyrophosphokinase (EC 2.7.6.1). 4. It is unlikely that the increased availability of 5-phosphoribosyl 1-pyrophosphate results from hormonal stimulation of ribose 5-phosphate formation. Methylene Blue and phenazine methosulphate both increase ribose 5-phosphate without altering the supply of 5-phosphoribosyl 1-pyrophosphate. 5. The activity of ribose 5-phosphate pyrophosphokinase is low in uterine extracts and increases rapidly in response to oestradiol. Therefore the hormonal activation of the routes of purine nucleotide synthesis both de novo and from preformed precursors may be due, at least in part, to an increased availability of the common rate-limiting substrate 5-phosphoribosyl 1-pyrophosphate, mediated by activation of ribose 5-phosphate pyrophosphokinase.

UI MeSH Term Description Entries
D008751 Methylene Blue A compound consisting of dark green crystals or crystalline powder, having a bronze-like luster. Solutions in water or alcohol have a deep blue color. Methylene blue is used as a bacteriologic stain and as an indicator. It inhibits GUANYLATE CYCLASE, and has been used to treat cyanide poisoning and to lower levels of METHEMOGLOBIN. Methylthionine Chloride,Swiss Blue,Basic Blue 9,Chromosmon,Methylene Blue N,Methylthioninium Chloride,Urolene Blue,Blue 9, Basic,Blue N, Methylene,Blue, Methylene,Blue, Swiss,Blue, Urolene
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010428 Pentosephosphates
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D010619 Phenazines
D010756 Phosphoric Acids Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES. Pyrophosphoric Acids,Acids, Phosphoric,Acids, Pyrophosphoric
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011685 Purine Nucleotides Purines attached to a RIBOSE and a phosphate that can polymerize to form DNA and RNA. Nucleotides, Purine
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot

Related Publications

J M Oliver
January 1979, Advances in experimental medicine and biology,
Copied contents to your clipboard!