Solvent proton magnetic relaxation dispersion in solutions of concanavalin A. 1973

S H Koenig, and R D Brown, and C F Brewer

Concanavalin A, a protein isolated from jack beans, exhibits several important biological properties, all of which are related to its ability to bind and precipitate specific polysaccharides. Concanavalin A is a dimer at pH 5.6, and has one transition-metal and one calcium-ion binding site per monomer unit of molecular weight 27,000. Both metal-ion sites must be occupied for the protein to be active. It is of interest to determine the role of the transition metal ion in Concanavalin A and its relationship to the sugar binding activity of the protein. We report the magnetic field and temperature dependences of the spin-lattice magnetic relaxation rates of solvent protons in aqueous solutions of zinc and manganese derivatives of Concanavalin A, and the influence of monosaccharide binding on these rates. The results of a leastsquares fit of the data to the theory, with five adjustable parameters, indicate that there is one rapidly exchanging water molecule ligand on the Mn(2+) ion, with a residence lifetime of 2.5 musec at 25 degrees , and with its protons 0.27 nm (2.7 A) from the Mn(2+) ion. We find that at low magnetic fields (proton Larmor frequencies below about 10 MHz), the correlation time for the dipolar interaction between the Mn(2+) electronic spin moment and the protons on the water ligand is the spin-lattice relaxation time tau(S) of the Mn(2+) moment, but that at higher magnetic fields the correlation time for the dipolar interaction is determined by the Brownian rotational tumbling of the protein, because of the substantial variation of tau(S) with magnetic field. Monosaccharide binding to manganese Concanavalin A has little effect on the relaxation rates of solvent protons, a result that indicates that the sugars do not bind directly to the transition metal in the protein.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal

Related Publications

S H Koenig, and R D Brown, and C F Brewer
January 1976, International journal of peptide and protein research,
S H Koenig, and R D Brown, and C F Brewer
February 1980, Biophysical journal,
S H Koenig, and R D Brown, and C F Brewer
January 2001, Journal of magnetic resonance (San Diego, Calif. : 1997),
S H Koenig, and R D Brown, and C F Brewer
September 1970, The Journal of biological chemistry,
S H Koenig, and R D Brown, and C F Brewer
January 2001, Methods in enzymology,
S H Koenig, and R D Brown, and C F Brewer
January 1983, Archives of biochemistry and biophysics,
S H Koenig, and R D Brown, and C F Brewer
February 2011, Journal of magnetic resonance (San Diego, Calif. : 1997),
S H Koenig, and R D Brown, and C F Brewer
June 1969, The Journal of biological chemistry,
Copied contents to your clipboard!