Quantitative determination and location of newly synthesized virus-specific ribonucleic acid in chicken cells infected with Rous sarcoma virus. 1973

J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann

A sensitive and quantitative nucleic acid hybridization assay for the detection of radioactively labeled avian tumor virus-specific RNA in infected chicken cells has been developed. In our experiments we made use of the fact that DNA synthesized by virions of avian myeloblastosis virus in the presence of actinomycin D (AMV DNA) is complementary to at least 35% of the sequences of 70S RNA from the Schmidt-Ruppin strain (SRV) of Rous sarcoma virus. Annealing of radioactive RNA (either SRV RNA or RNA extensively purified from SRV-infected chicken cells) with AMV DNA followed by ribonuclease digestion and Sephadex chromatography yielded products which were characterized as avian tumor virus-specific RNA-DNA hybrids by hybridization competition with unlabeled 70S AMV RNA, equilibrium density-gradient centrifugation in Cs(2)SO(4) gradients, and by analysis of their ribonucleotide composition. The amount of viral RNA synthesized during pulse labeling with (3)H-uridine could be quantitated by the addition of an internal standard consisting of (32)P-labeled SRV RNA prior to purification and hybridization. This quantitative assay was used to determine that, in SRV-infected chicken cells labeled for increasing lengths of time with (3)H-uridine, labeled viral RNA appeared first in a nuclear fraction, then in a cytoplasmic fraction, and still later in mature virions. This observation is consistent with the hypothesis that RNA tumor virus RNA is synthesized in the nucleus of infected cells.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen

Related Publications

J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
May 1971, Journal of virology,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
May 1972, Journal of virology,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
July 1972, Journal of virology,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
June 1972, Journal of virology,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
November 1977, Virology,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
September 1966, Virology,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
March 1971, Biochemical and biophysical research communications,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
January 1988, Archives of virology,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
November 1963, Comptes rendus hebdomadaires des seances de l'Academie des sciences,
J T Parsons, and J M Coffin, and R K Haroz, and P A Bromley, and C Weissmann
December 1979, Comptes rendus des seances de l'Academie des sciences. Serie D, Sciences naturelles,
Copied contents to your clipboard!